MATH 304
 Linear Algebra

Lecture 14:
Linear independence (continued).

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$. Otherwise S is linearly independent.

Theorem Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Examples of linear independence.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow \quad a_{1}=a_{2}=a_{3}=0$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{v}_{3}=(4,-7,3)$. Determine whether vectors
$\mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
We have to check if there exist $r_{1}, r_{2}, r_{3} \in \mathbb{R}$ not all zero such that $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}=\mathbf{0}$.
This vector equation is equivalent to a system

$$
\left\{\begin{array}{l}
r_{1}+3 r_{2}+4 r_{3}=0 \\
2 r_{1}+r_{2}-7 r_{3}=0 \\
0 r_{1}+r_{2}+3 r_{3}=0
\end{array} \quad\left(\begin{array}{rrr|r}
1 & 3 & 4 & 0 \\
2 & 1 & -7 & 0 \\
0 & 1 & 3 & 0
\end{array}\right)\right.
$$

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is singular. We obtain that $\operatorname{det} A=0$.

Theorem Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}$ are linearly dependent whenever $m>n$ (i.e., the number of coordinates is less than the number of vectors).

Proof: Let $\mathbf{v}_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)$ for $j=1,2, \ldots, m$. Then the vector equality $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{m} \mathbf{v}_{m}=\mathbf{0}$ is equivalent to the system

$$
\left\{\begin{array}{c}
a_{11} t_{1}+a_{12} t_{2}+\cdots+a_{1 m} t_{m}=0, \\
a_{21} t_{1}+a_{22} t_{2}+\cdots+a_{2 m} t_{m}=0, \\
\cdots \cdots \cdots \\
a_{n 1} t_{1}+a_{n 2} t_{2}+\cdots+a_{n m} t_{m}=0 .
\end{array}\right.
$$

Note that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ are columns of the matrix $\left(a_{i j}\right)$. The number of leading entries in the row echelon form is at most n. If $m>n$ then there are free variables, therefore the zero solution is not unique.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Two vectors are linearly dependent if and only if they are parallel. Hence \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent if and only if the matrix $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ is invertible.

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=2 \neq 0 .
$$

Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
Four vectors in \mathbb{R}^{3} are always linearly dependent.
Thus $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.

Problem 1. Show that functions $1, e^{x}$, and e^{-x} are linearly independent in $F(\mathbb{R})$.

Proof: Suppose that $a+b e^{x}+c e^{-x}=0$ for some $a, b, c \in \mathbb{R}$. We have to show that $a=b=c=0$.
$x=0 \Longrightarrow a+b+c=0$
$x=1 \Longrightarrow a+b e+c e^{-1}=0$
$x=-1 \Longrightarrow a+b e^{-1}+c e=0$
The matrix of the system is $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & e & e^{-1} \\ 1 & e^{-1} & e\end{array}\right)$. $\operatorname{det} A=e^{2}-e^{-2}-2 e+2 e^{-1}=$

$$
\begin{aligned}
& =\left(e-e^{-1}\right)\left(e+e^{-1}\right)-2\left(e-e^{-1}\right)= \\
& =\left(e-e^{-1}\right)\left(e+e^{-1}-2\right)=\left(e-e^{-1}\right)\left(e^{1 / 2}-e^{-1 / 2}\right)^{2} \neq 0 .
\end{aligned}
$$

Hence the system has a unique solution $a=b=c=0$.

Problem 2. Show that functions $e^{x}, e^{2 x}$, and $e^{3 x}$ are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $a e^{x}+b e^{2 x}+c e^{3 x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Differentiate this identity twice:

$$
\begin{aligned}
& a e^{x}+2 b e^{2 x}+3 c e^{3 x}=0 \\
& a e^{x}+4 b e^{2 x}+9 c e^{3 x}=0
\end{aligned}
$$

It follows that $A \mathbf{v}=\mathbf{0}$, where
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}a e^{x} \\ b e^{2 x} \\ c e^{3 x}\end{array}\right)$.
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}a e^{x} \\ b e^{2 x} \\ c e^{3 x}\end{array}\right)$.
To compute $\operatorname{det} A$, subtract the 1 st row from the 2nd and the 3rd rows:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 4 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 3 & 8
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right|=2 .
$$

Since A is invertible, we obtain
$A \mathbf{v}=\mathbf{0} \Longrightarrow \mathbf{v}=\mathbf{0} \Longrightarrow a e^{x}=b e^{2 x}=c e^{3 x}=0$
$\Longrightarrow a=b=c=0$

Theorem 1 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Theorem 2 The set of functions

$$
\left\{x^{m} e^{\lambda x} \mid \lambda \in \mathbb{R}, m=0,1,2, \ldots\right\}
$$

is linearly independent.

