MATH 304
 Linear Algebra

Lecture 15:
Basis of a vector space.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$. Otherwise S is linearly independent.

Remark. If a set S (finite or infinite) is linearly independent then any subset of S is also linearly independent.

Theorem 1 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct real numbers. Then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Theorem 2 The set of functions

$$
\left\{x^{m} e^{\lambda x} \mid \lambda \in \mathbb{R}, m=0,1,2, \ldots\right\}
$$

is linearly independent.

Problem. Show that functions x, e^{x}, and e^{-x} are linearly independent in $C(\mathbb{R})$.

Suppose that $a x+b e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Divide both sides of the identity by e^{x} :

$$
a x e^{-x}+b+c e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty$.

$$
\Longrightarrow b=0
$$

Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty . \quad \Longrightarrow a=0$ Now $c e^{-x}=0 \Longrightarrow c=0$.

Spanning set

Let S be a subset of a vector space V.
Definition. The span of the set S is the smallest subspace $W \subset V$ that contains S. If S is not empty then $W=\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
We say that the set S spans the subspace W or that S is a spanning set for W.
Remark. If S_{1} is a spanning set for a vector space V and $S_{1} \subset S_{2} \subset V$, then S_{2} is also a spanning set for V.

Spanning sets and linear independence

Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors from a vector space V.
Proposition If \mathbf{v}_{0} is a linear combination of vectors
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then

$$
\operatorname{Span}\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)
$$

Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then

$$
\begin{aligned}
& t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}= \\
= & \left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}
\end{aligned}
$$

Corollary Any spanning set for a vector space is minimal if and only if it is linearly independent.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Suppose that a set $S \subset V$ is a basis for V. "Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k},
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$
\begin{aligned}
& \mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=r_{1}^{\prime} \mathbf{v}_{1}+r_{2}^{\prime} \mathbf{v}_{2}+\cdots+r_{k}^{\prime} \mathbf{v}_{k} \\
& \Longrightarrow\left(r_{1}-r_{1}^{\prime}\right) \mathbf{v}_{1}+\left(r_{2}-r_{2}^{\prime}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-r_{k}^{\prime}\right) \mathbf{v}_{k}=\mathbf{0} \\
& \Longrightarrow \quad r_{1}-r_{1}^{\prime}=r_{2}-r_{2}^{\prime}=\ldots=r_{k}-r_{k}^{\prime}=0
\end{aligned}
$$

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.
Indeed, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n-1}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
1 \\
\vdots \\
r_{k}
\end{array}\right) .
$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are consecutive columns of A.

- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span \mathbb{R}^{n} if the row echelon form of A has no zero rows.
- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).

spanning linear independence

spanning
no linear independence

no spanning linear independence

no spanning no linear independence

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $k<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ do not span \mathbb{R}^{n}.
Theorem 2 If $k>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent.
Theorem 3 If $k=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent (as they are not parallel), but they do not span \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent since

$$
\left|\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=-(-2)=2 \neq 0 .
$$

Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{3} (because $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ already span \mathbb{R}^{3}), but they are linearly dependent.

