MATH 304
 Linear Algebra
 Lecture 18:
 Rank and nullity of a matrix.

Nullspace

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
Definition. The nullspace of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.

Theorem The nullspace $N(A)$ is a subspace of the vector space \mathbb{R}^{n}.

Proof: We have to show that $N(A)$ is nonempty, closed under addition, and closed under scaling.
First of all, $A \mathbf{0}=\mathbf{0} \Longrightarrow \mathbf{0} \in N(A) \Longrightarrow N(A)$ is not empty.
Secondly, if $\mathbf{x}, \mathbf{y} \in N(A)$, i.e., if $A \mathbf{x}=\mathbf{A} \mathbf{y}=\mathbf{0}$, then $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}+\mathbf{0}=\mathbf{0} \quad \Longrightarrow \mathbf{x}+\mathbf{y} \in N(A)$.
Thirdly, if $\mathbf{x} \in N(A)$, i.e., if $A \mathbf{x}=\mathbf{0}$, then for any $r \in \mathbb{R}$ one has $A(r \mathbf{x})=r(A \mathbf{x})=r \mathbf{0}=\mathbf{0} \quad \Longrightarrow \quad r \mathbf{x} \in N(A)$.

Definition. The dimension of the nullspace $N(A)$ is called the nullity of the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3
\end{array}\right) \\
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
\end{gathered}
$$

General element of $N(A)$:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =(t+2 s,-2 t-3 s, t, s) \\
& =t(1,-2,1,0)+s(2,-3,0,1), \quad t, s \in \mathbb{R} .
\end{aligned}
$$

Vectors $(1,-2,1,0)$ and $(2,-3,0,1)$ form a basis for $N(A)$. Thus the nullity of the matrix A is 2 .

Row space

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A.
The dimension of the row space is called the rank of the matrix A.

Theorem 1 Elementary row operations do not change the row space of a matrix.
Theorem 2 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.
Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.
Theorem 3 The rank of a matrix A plus the nullity of A equals the number of columns of A.

Problem. Find the rank of the matrix

$$
A=\left(\begin{array}{rrrr}
-1 & 0 & -1 & 2 \\
2 & 0 & 2 & 0 \\
1 & 0 & 1 & -1
\end{array}\right) .
$$

Elementary row operations do not change the row space. Let us convert A to row echelon form:
$\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 1 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 \\ 1 & 0 & 1 & -1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrrr}-1 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrrr}1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
Vectors ($1,0,1,-2$) and ($0,0,0,1$) form a basis for the row space of A. Thus the rank of A is 2 .

Remark. The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.
The nullity of A equals the number of free variables in the corresponding system, which equals the number of columns without leading entries.
Consequently, rank+nullity is the number of all columns in the matrix A.

Theorem 1 Elementary row operations do not

 change the row space of a matrix.Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be the rows of A and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ be the rows of B. We have to show that $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$.
Observe that any row \mathbf{b}_{i} of B belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$. Indeed, either $\mathbf{b}_{i}=\mathbf{a}_{j}$ for some $1 \leq j \leq m$, or $\mathbf{b}_{i}=r \mathbf{a}_{i}$ for some scalar $r \neq 0$, or $\mathbf{b}_{i}=\mathbf{a}_{i}+r \mathbf{a}_{j}$ for some $j \neq i$ and $r \in \mathbb{R}$.
It follows that $\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \subset \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$.
Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$
\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right) \subset \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) .
$$

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) .
$$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2 .
Since

$$
(\text { rank of } A)+(\text { nullity of } A)=4,
$$

it follows that the nullity of A is 2 .

Column space

Definition. The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T}.
Theorem 2 Elementary column operations do not change the column space of a matrix.
Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (although they can change the column space).
Theorem 4 For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$
B=\left(\begin{array}{rrrr}
1 & 0 & -1 & 2 \\
2 & 1 & 2 & 3 \\
-1 & 0 & 1 & -2
\end{array}\right)
$$

The column space of B coincides with the row space of B^{T}. To find a basis, we convert B^{T} to row echelon form:

$$
\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 0 \\
-1 & 2 & 1 \\
2 & 3 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 0 \\
0 & 4 & 0 \\
2 & 3 & -2
\end{array}\right)
$$

$\rightarrow\left(\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & -1 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
Thus vectors $(1,2,-1)$ and $(0,1,0)$ form a basis for the column space of the matrix B.

Problem. Find a basis for the column space of the matrix

$$
B=\left(\begin{array}{rrrr}
1 & 0 & -1 & 2 \\
2 & 1 & 2 & 3 \\
-1 & 0 & 1 & -2
\end{array}\right) .
$$

Alternative solution: The dimension of the column space equals the dimension of the row space, which is 2 (since the first two rows are not parallel and the third row is a multiple of the first one).
The 1st and the 2 nd columns, $(1,2,-1)$ and $(0,1,0)$, are linearly independent. It follows that they form a basis for the column space (actually, any two columns form such a basis).

