MATH 304
 Linear Algebra

Lecture 19:

Linear transformations. Kernel and range.

Linear mapping $=$ linear transformation $=$ linear function
Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})
$$

$$
L(r \mathbf{x})=r L(\mathbf{x})
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
A linear mapping $\ell: V \rightarrow \mathbb{R}$ is called a linear functional on V.

If $V_{1}=V_{2}$ (or if both V_{1} and V_{2} are functional spaces) then a linear mapping $L: V_{1} \rightarrow V_{2}$ is called a linear operator.

Linear mapping $=$ linear transformation $=$ linear function

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})
$$

$$
L(r \mathbf{x})=r L(\mathbf{x})
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Remark. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ is a linear transformation of the vector space \mathbb{R} if and only if $b=0$.

Properties of linear mappings

Let $L: V_{1} \rightarrow V_{2}$ be a linear mapping.

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)=L\left(r_{1} \mathbf{v}_{1}\right)+L\left(r_{2} \mathbf{v}_{2}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)$,
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}\right)=L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)+L\left(r_{3} \mathbf{v}_{3}\right)=$ $=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+r_{3} L\left(\mathbf{v}_{3}\right)$, and so on.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
$L\left(\mathbf{0}_{1}\right)=L\left(0 \mathbf{0}_{1}\right)=0 L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.
$L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function $L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

Linear differential operators

- an ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where g_{0}, g_{1}, g_{2} are smooth functions on \mathbb{R}.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by ∇^{2}).

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The kernel $\operatorname{ker} L$ is the nullspace of the matrix.

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)+z\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

The range $f\left(\mathbb{R}^{3}\right)$ is the column space of the matrix.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

The range of L is spanned by vectors $(1,1,1),(0,2,0)$, and $(-1,-1,-1)$. It follows that $L\left(\mathbb{R}^{3}\right)$ is the plane spanned by $(1,1,1)$ and $(0,1,0)$.
To find er L, we apply row reduction to the matrix:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{ker} L$ if $x-z=y=0$.
It follows that er L is the line spanned by $(1,0,1)$.

More examples

$$
\begin{aligned}
& f: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R}), \quad f(A)=A+A^{T} . \\
& f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
2 a & b+c \\
b+c & 2 d
\end{array}\right) .
\end{aligned}
$$

$\operatorname{ker} f$ is the subspace of anti-symmetric matrices, the range of f is the subspace of symmetric matrices.

$$
\begin{aligned}
& g: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R}), \quad g(A)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) A . \\
& g\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

The range of g is the subspace of matrices with the zero second row, ker g is the same as the range
$\Longrightarrow g(g(A))=O$.
\mathcal{P} : the space of polynomials.
\mathcal{P}_{n} : the space of polynomials of degree less than n.
$D: \mathcal{P} \rightarrow \mathcal{P}, \quad(D p)(x)=p^{\prime}(x)$.
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}$
$\Longrightarrow(D p)(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$
The range of D is the entire \mathcal{P}, ker $D=\mathcal{P}_{1}=$ the subspace of constants.
$D: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}, \quad(D p)(x)=p^{\prime}(x)$.
$p(x)=a x^{3}+b x^{2}+c x+d \Longrightarrow(D p)(x)=3 a x^{2}+2 b x+c$
The range of D is \mathcal{P}_{3}, ker $D=\mathcal{P}_{1}$.

