MATH 304

Linear Algebra

Lecture 20:
 Review for Test 1.

Topics for Test 1

Part I: Elementary linear algebra (Leon 1.1-1.4, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix.

Elementary row operations, row echelon form and reduced row echelon form.

- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon 3.1-3.6)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension. Rank and nullity of a matrix.
- Change of coordinates, transition matrix.

Sample problems for Test 1

Problem 1 (20 pts.) Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

Problem 2 ($\mathbf{3 0}$ pts.) Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.

Bonus Problem 5 (20 pts.) Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Bonus Problem 6 (20 pts.) Let V and W be subspaces of the vector space \mathbb{R}^{n} such that $V \cup W$ is also a subspace of \mathbb{R}^{n}. Show that $V \subset W$ or $W \subset V$.

Problem 1. Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1, \\
x-3 y=-5, \\
2 x+y+z=0 .
\end{array}\right.
$$

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary row operations:

$$
\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
1 & -3 & 0 & -5 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -5 & 1 & -6 \\
0 & -3 & 3 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & -3 & 3 & -2 \\
0 & -5 & 1 & -6
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & -5 & 1 & -6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & -4 & -\frac{8}{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & \frac{2}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \\
\rightarrow\left(\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{lll|r}
1 & 2 & 0 & \frac{5}{3} \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & \frac{4}{3} \\
0 & 0 & 1 & \frac{2}{3}
\end{array}\right) .
\end{aligned}
$$

Thus the three planes intersect at the point $\left(-1, \frac{4}{3}, \frac{2}{3}\right)$.

Problem 1. Find the point of intersection of the planes $x+2 y-z=1, x-3 y=-5$, and $2 x+y+z=0$ in \mathbb{R}^{3}.

Alternative solution: The intersection point (x, y, z) is a solution of the system

$$
\left\{\begin{array}{l}
x+2 y-z=1, \\
x-3 y=-5, \\
2 x+y+z=0 .
\end{array}\right.
$$

Add all three equations: $4 x=-4 \Longrightarrow x=-1$.
Substitute $x=-1$ into the 2nd equation: $\Longrightarrow y=\frac{4}{3}$.
Substitute $x=-1$ and $y=\frac{4}{3}$ into the 3rd equation:
$\Longrightarrow z=\frac{2}{3}$.
It remains to check that $x=-1, y=\frac{4}{3}, z=\frac{2}{3}$ is indeed a solution of the system.

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Subtract 2 times the 4 th column of A from the 1 st column:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrrr}
-1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 4th row:

$$
\left|\begin{array}{rrrr}
-1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrr}
-1 & -2 & 4 \\
2 & 3 & 2 \\
0 & 0 & -1
\end{array}\right| .
$$

Expand the determinant by the 3rd row:

$$
\left|\begin{array}{rrr}
-1 & -2 & 4 \\
2 & 3 & 2 \\
0 & 0 & -1
\end{array}\right|=(-1)\left|\begin{array}{rr}
-1 & -2 \\
2 & 3
\end{array}\right|=-1
$$

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(ii) Find the inverse matrix A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract 2 times the 1 st row from the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 1st row from the 3rd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 1st row from the 4th row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 4th row from the 2nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Subtract the 4th row from the 3rd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Add 4 times the 2 nd row to the 4 th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & 6 & 4 & 0 & -7\end{array}\right)$

Add 32 times the 3rd row to the 4th row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Add 10 times the 3rd row to the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Add the 4th row to the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Add 4 times the 3 rd row to the 1 st row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\ 0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39\end{array}\right)$
Subtract 2 times the 2 nd row from the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & -1 & 0 & 0 & 2 & 1 & 10 & -12 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Multiply the 2nd, the 3rd, and the 4th rows by -1 :

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-6 & -4 & -32 & 39
\end{array}\right) .
$$

Problem 2. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1 .
It follows that $\operatorname{det} I=(-1)^{3} \operatorname{det} A$.
$\Longrightarrow \operatorname{det} A=-\operatorname{det} I=-1$.

Problem 3. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
$(0,0,0) \in S_{1} \Longrightarrow S_{1}$ is not empty.
$x y z=0 \Longrightarrow(r x)(r y)(r z)=r^{3} x y z=0$.
That is, $\mathbf{v}=(x, y, z) \in S_{1} \Longrightarrow r \mathbf{v}=(r x, r y, r z) \in S_{1}$. Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition.
Counterexample: $(1,1,0)+(0,0,1)=(1,1,1)$.

Problem 3. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
$(0,0,0) \in S_{2} \Longrightarrow S_{2}$ is not empty.
$x+y+z=0 \Longrightarrow r x+r y+r z=r(x+y+z)=0$.
Hence S_{2} is closed under scalar multiplication.
$x+y+z=x^{\prime}+y^{\prime}+z^{\prime}=0 \Longrightarrow$
$\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)=0$.
That is, $\mathbf{v}=(x, y, z), \mathbf{v}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S_{2}$

$$
\Longrightarrow \mathbf{v}+\mathbf{v}^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{2} .
$$

Hence S_{2} is closed under addition.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
$y^{2}+z^{2}=0 \Longleftrightarrow y=z=0$.
S_{3} is a nonempty set closed under addition and scalar multiplication.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.
S_{4} is a nonempty set closed under scalar multiplication. However S_{4} is not closed under addition.
Counterexample: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Problem 4. Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.

The rank (= dimension of the row space) and the nullity ($=$ dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix B into row echelon form.

Interchange the 1st row with the 2 nd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$

Add 3 times the 1st row to the 3rd row, then subtract 2 times the 1 st row from the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 2 & -1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Multiply the 2 nd row by -1 :
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Add the 4th row to the 3rd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & -4 & 3\end{array}\right)$

Add 3 times the 2 nd row to the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -16 & 0\end{array}\right)$
Add 16 times the 3 rd row to the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3 . Since
$($ rank of $B)+($ nullity of $B)=($ the number of columns of $B)=4$, it follows that the nullity of B equals 1 .

Problem 4. Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix B is the same as the row space of its row echelon form:

$$
\left(\begin{array}{rrrr}
0 & -1 & 4 & 1 \\
1 & 1 & 2 & -1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:

$$
\mathbf{v}_{1}=(1,1,2,-1), \quad \mathbf{v}_{2}=(0,1,-4,-1), \quad \mathbf{v}_{3}=(0,0,1,0)
$$

To extend the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to a basis for \mathbb{R}^{4}, we need a vector $\mathbf{v}_{4} \in \mathbb{R}^{4}$ that is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. It is known that at least one of the vectors $\mathbf{e}_{1}=(1,0,0,0)$, $\mathbf{e}_{2}=(0,1,0,0), \mathbf{e}_{3}=(0,0,1,0)$, and $\mathbf{e}_{4}=(0,0,0,1)$ can be chosen as \mathbf{v}_{4}.

In particular, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{4}$ form a basis for \mathbb{R}^{4}. This follows from the fact that the 4×4 matrix whose rows are these vectors is not singular:

$$
\left|\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1 \neq 0
$$

Bonus Problem 5. Show that the functions $f_{1}(x)=x$, $f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Suppose that $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Let us differentiate the identity 4 times:

$$
\begin{gathered}
a x+b x e^{x}+c e^{-x}=0, \\
a+b e^{x}+b x e^{x}-c e^{-x}=0, \\
2 b e^{x}+b x e^{x}+c e^{-x}=0, \\
3 b e^{x}+b x e^{x}-c e^{-x}=0, \\
4 b e^{x}+b x e^{x}+c e^{-x}=0 .
\end{gathered}
$$

(the 5th identity)-(the 3rd identity): $2 b e^{x}=0 \Longrightarrow b=0$.
Substitute $b=0$ in the 3rd identity: $c e^{-x}=0 \Longrightarrow c=0$.
Substitute $b=c=0$ in the 2nd identity: $a=0$.

Bonus Problem 5. Show that the functions $f_{1}(x)=x$, $f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $a x+b x e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

For any $x \neq 0$ divide both sides of the identity by $x e^{x}$:

$$
a e^{-x}+b+c x^{-1} e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty . \quad \Longrightarrow b=0$
Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty$. $\Longrightarrow a=0$

Now $c e^{-x}=0 \Longrightarrow c=0$.

Bonus Problem 6. Let V and W be subspaces of the vector space \mathbb{R}^{n} such that $V \cup W$ is also a subspace of \mathbb{R}^{n}. Show that $V \subset W$ or $W \subset V$.

Assume the contrary: $V \not \subset W$ and $W \not \subset V$. Then there exist vectors $\mathbf{v} \in V$ and $\mathbf{w} \in W$ such that $\mathbf{v} \notin W$ and $\mathbf{w} \notin V$.

Let $\mathbf{x}=\mathbf{v}+\mathbf{w}$. Since $V \cup W$ is a subspace, we have

$$
\mathbf{v}, \mathbf{w} \in V \cup W \Longrightarrow \mathbf{x} \in V \cup W \Longrightarrow \mathbf{x} \in V \text { or } \mathbf{x} \in W
$$

Case 1: $\mathbf{x} \in V . \quad \Longrightarrow \mathbf{x}, \mathbf{v} \in V \Longrightarrow \mathbf{w}=\mathbf{x}-\mathbf{v} \in V$.
Case 2: $\mathbf{x} \in W . \quad \Longrightarrow \mathbf{x}, \mathbf{w} \in W \Longrightarrow \mathbf{v}=\mathbf{x}-\mathbf{w} \in W$.
In both cases, we get a contradiction!

