
MATH 304

Linear Algebra

Lecture 24:

Scalar product.



Vectors: geometric approach
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• A vector is represented by a directed segment.
• Directed segment is drawn as an arrow.
• Different arrows represent the same vector if

they are of the same length and direction.



Vectors: geometric approach
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−→
AB denotes the vector represented by the arrow
with tip at B and tail at A.
−→
AA is called the zero vector and denoted 0.



Vectors: geometric approach
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If v =
−→
AB then

−→
BA is called the negative vector of

v and denoted −v.



Vector addition

Given vectors a and b, their sum a + b is defined by

the rule
−→
AB +

−→
BC =

−→
AC .

That is, choose points A, B , C so that
−→
AB = a and−→

BC = b. Then a + b =
−→
AC .
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The difference of the two vectors is defined as
a − b = a + (−b).

a − b

b

a



Properties of vector addition:

a + b = b + a (commutative law)

(a + b) + c = a + (b + c) (associative law)

a + 0 = 0 + a = a

a + (−a) = (−a) + a = 0

Let
−→
AB = a. Then a + 0 =

−→
AB +

−→
BB =

−→
AB = a,

a + (−a) =
−→
AB +

−→
BA =

−→
AA = 0.

Let
−→
AB = a,

−→
BC = b, and

−→
CD = c. Then

(a + b) + c = (
−→
AB +

−→
BC ) +

−→
CD =

−→
AC +

−→
CD =

−→
AD,

a + (b + c) =
−→
AB + (

−→
BC +

−→
CD) =

−→
AB +

−→
BD =

−→
AD.



Parallelogram rule

Let
−→
AB = a,

−→
BC = b,

−−→
AB ′ = b, and

−−→
B ′C ′ = a.

Then a + b =
−→
AC , b + a =

−−→
AC ′.
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Wrong picture!



Parallelogram rule

Let
−→
AB = a,

−→
BC = b,

−−→
AB ′ = b, and

−−→
B ′C ′ = a.

Then a + b =
−→
AC , b + a =

−−→
AC ′.
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Right picture!



Scalar multiplication

Let v be a vector and r ∈ R. By definition, rv is a
vector whose magnitude is |r | times the magnitude
of v. The direction of rv coincides with that of v if
r > 0. If r < 0 then the directions of rv and v are
opposite.

v

3v

−2v



Scalar multiplication

Let v be a vector and r ∈ R. By definition, rv is a
vector whose magnitude is |r | times the magnitude
of v. The direction of rv coincides with that of v if
r > 0. If r < 0 then the directions of rv and v are
opposite.

Properties of scalar multiplication:

r(a + b) = ra + rb (distributive law #1)

(r + s)a = ra + sa (distributive law #2)

r(sa) = (rs)a (associative law)

1a = a



Beyond linearity: length of a vector

The length (or the magnitude) of a vector
−→
AB is

the length of the representing segment AB . The
length of a vector v is denoted |v| or ‖v‖.

Properties of vector length:

|x| ≥ 0, |x| = 0 only if x = 0 (positivity)

|rx| = |r | |x| (homogeneity)

|x + y| ≤ |x| + |y| (triangle inequality)
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Beyond linearity: angle between vectors

Given nonzero vectors x and y, let A, B , and C be

points such that
−→
AB = x and

−→
AC = y. Then ∠BAC

is called the angle between x and y.

The vectors x and y are called orthogonal (denoted
x ⊥ y) if the angle between them equals 90o.
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x x + y

y

Pythagorean Theorem:

x ⊥ y =⇒ |x + y|2 = |x|2 + |y|2

3-dimensional Pythagorean Theorem:

If vectors x, y, z are pairwise orthogonal then
|x + y + z|2 = |x|2 + |y|2 + |z|2
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x − y

Law of cosines:

|x − y|2 = |x|2 + |y|2 − 2|x| |y| cos θ



x xx + y

x − y

y
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Parallelogram Identity:

|x + y|2 + |x − y|2 = 2|x|2 + 2|y|2



Beyond linearity: dot product

The dot product of vectors x and y is

x · y = |x| |y| cos θ,

where θ is the angle between x and y.

The dot product is also called the scalar product.
Alternative notation: (x, y) or 〈x, y〉.
The vectors x and y are orthogonal if and only if
x · y = 0.

Relations between lengths and dot products:

• |x| =
√

x · x
• |x · y| ≤ |x| |y|
• |x − y|2 = |x|2 + |y|2 − 2 x·y



Vectors: algebraic approach

An n-dimensional coordinate vector is an element of
R

n, i.e., an ordered n-tuple (x1, x2, . . . , xn) of real
numbers.

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
vectors, and r ∈ R be a scalar. Then, by definition,

a + b = (a1 + b1, a2 + b2, . . . , an + bn),

ra = (ra1, ra2, . . . , ran),

0 = (0, 0, . . . , 0),

−b = (−b1,−b2, . . . ,−bn),

a − b = a + (−b) = (a1 − b1, a2 − b2, . . . , an − bn).



Properties of vector addition and scalar multiplication:

a + b = b + a

(a + b) + c = a + (b + c)

a + 0 = 0 + a = a

a + (−a) = (−a) + a = 0

r(a + b) = ra + rb

(r + s)a = ra + sa

r(sa) = (rs)a

1a = a



Cartesian coordinates: geometric meets algebraic

(−3, 2)

(2, 1)

(−3, 2)

(2, 1)

Once we specify an origin O, each point A is

associated a position vector
−→
OA. Conversely, every

vector has a unique representative with tail at O.

Cartesian coordinates allow us to identify a line, a
plane, and space with R, R

2, and R
3, respectively.



Length and distance

Definition. The length of a vector
v = (v1, v2, . . . , vn) ∈ R

n is

‖v‖ =
√

v 2
1 + v 2

2 + · · · + v 2
n
.

The distance between vectors/points x and y is
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · · + xnyn =
n

∑

k=1

xkyk .

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)

x · y = y · x (symmetry)

(x + y) · z = x · z + y · z (distributive law)

(rx) · y = r(x · y) (homogeneity)



Relations between lengths and scalar products:

‖x‖ =
√

x · x
|x · y| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality)

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2 x·y

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖ for some 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.
The vectors x and y are said to be orthogonal

(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Problem. Find the angle θ between vectors
x = (2,−1) and y = (3, 1).

x · y = 5, ‖x‖ =
√

5, ‖y‖ =
√

10.

cos θ =
x · y

‖x‖ ‖y‖ =
5√

5
√

10
=

1√
2

=⇒ θ = 45o

Problem. Find the angle φ between vectors
v = (−2, 1, 3) and w = (4, 5, 1).

v · w = 0 =⇒ v ⊥ w =⇒ φ = 90o



Orthogonal projection

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o

such that p is parallel to y and o is orthogonal to y.

y

p

xo

p = orthogonal projection of x onto y



Orthogonal projection

Let x, y ∈ R
n, with y 6= 0.

Then there exists a unique decomposition x = p+o

such that p is parallel to y and o is orthogonal to y.

Namely, p = αu, where u is the unit vector of the
same direction as y, and α = x · u.

Indeed, p · u = (αu) · u = α(u · u) = α‖u‖2 = α = x · u.
Hence o · u = (x − p) · u = x · u − p · u = 0 =⇒ o ⊥ u

=⇒ o ⊥ y.

p is called the vector projection of x onto y,
α = ±‖p‖ is called the scalar projection of x onto y.

u =
y

‖y‖ , α =
x · y
‖y‖ , p =

x · y
y · y y.



Problem. Find the distance from the point
x = (3, 1) to the line spanned by y = (2,−1).

Consider the decomposition x = p + o, where p is parallel to
y while o ⊥ y. The required distance is the length of the
orthogonal component o.

p =
x · y
y · y y =

5

5
(2,−1) = (2,−1),

o = x − p = (3, 1) − (2,−1) = (1, 2), ‖o‖ =
√

5.

Problem. Find the point on the line y = −x that
is closest to the point (3, 4).

The required point is the projection p of v = (3, 4) on the
vector w = (1,−1) spanning the line y = −x .

p =
v · w
w · w w =

−1

2
(1,−1) =

(

−1

2
,
1

2

)


