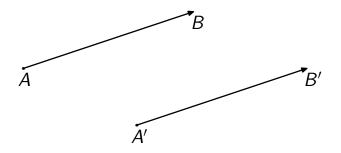
MATH 304 Linear Algebra Lecture 24:

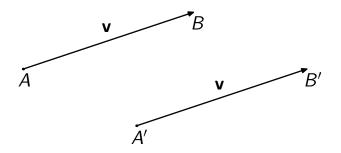
Scalar product.

Vectors: geometric approach



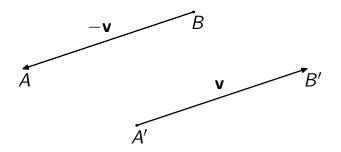
- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach



 \overrightarrow{AB} denotes the vector represented by the arrow with tip at *B* and tail at *A*. \overrightarrow{AA} is called the *zero vector* and denoted **0**.

Vectors: geometric approach

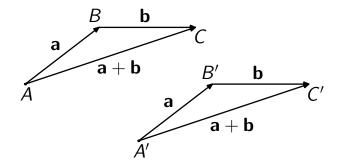


If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *negative vector* of \mathbf{v} and denoted $-\mathbf{v}$.

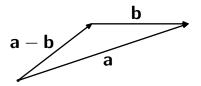
Vector addition

Given vectors **a** and **b**, their sum $\mathbf{a} + \mathbf{b}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

That is, choose points A, B, C so that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$.



The *difference* of the two vectors is defined as $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$.



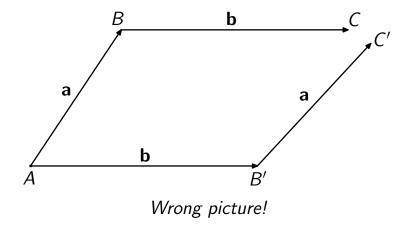
Properties of vector addition:

$$\begin{aligned} \mathbf{a} + \mathbf{b} &= \mathbf{b} + \mathbf{a} & (\text{commutative law}) \\ (\mathbf{a} + \mathbf{b}) + \mathbf{c} &= \mathbf{a} + (\mathbf{b} + \mathbf{c}) & (\text{associative law}) \\ \mathbf{a} + \mathbf{0} &= \mathbf{0} + \mathbf{a} &= \mathbf{a} \\ \mathbf{a} + (-\mathbf{a}) &= (-\mathbf{a}) + \mathbf{a} &= \mathbf{0} \end{aligned}$$

Let
$$\overrightarrow{AB} = \mathbf{a}$$
. Then $\mathbf{a} + \mathbf{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \mathbf{a}$,
 $\mathbf{a} + (-\mathbf{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \mathbf{0}$.
Let $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$, and $\overrightarrow{CD} = \mathbf{c}$. Then
 $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$,
 $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$.

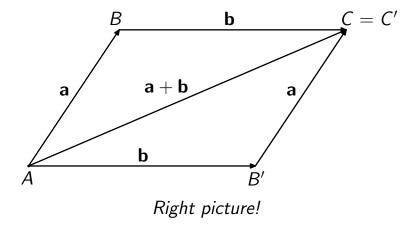
Parallelogram rule

Let
$$\overrightarrow{AB} = \mathbf{a}$$
, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{AB'} = \mathbf{b}$, and $\overrightarrow{B'C'} = \mathbf{a}$.
Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$, $\mathbf{b} + \mathbf{a} = \overrightarrow{AC'}$.



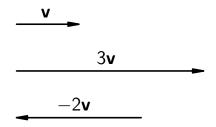
Parallelogram rule

Let
$$\overrightarrow{AB} = \mathbf{a}$$
, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{AB'} = \mathbf{b}$, and $\overrightarrow{B'C'} = \mathbf{a}$.
Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$, $\mathbf{b} + \mathbf{a} = \overrightarrow{AC'}$.



Scalar multiplication

Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.



Scalar multiplication

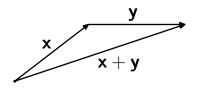
Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.

Properties of scalar multiplication:
$$r(\mathbf{a} + \mathbf{b}) = r\mathbf{a} + r\mathbf{b}$$
(distributive law #1) $(r + s)\mathbf{a} = r\mathbf{a} + s\mathbf{a}$ (distributive law #2) $r(s\mathbf{a}) = (rs)\mathbf{a}$ (associative law) $1\mathbf{a} - \mathbf{a}$ (associative law)

Beyond linearity: length of a vector

The **length** (or the **magnitude**) of a vector \overrightarrow{AB} is the length of the representing segment AB. The length of a vector **v** is denoted $|\mathbf{v}|$ or $||\mathbf{v}||$.

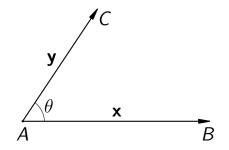
Properties of vector length: $|\mathbf{x}| \ge 0$, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)

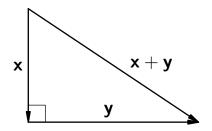


Beyond linearity: angle between vectors

Given nonzero vectors **x** and **y**, let A, B, and C be points such that $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AC} = \mathbf{y}$. Then $\angle BAC$ is called the **angle** between **x** and **y**.

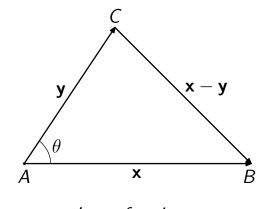
The vectors **x** and **y** are called **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.



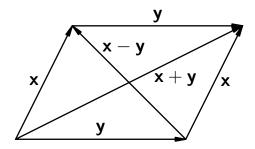


Pythagorean Theorem: $\mathbf{x} \perp \mathbf{y} \implies |\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$

3-dimensional Pythagorean Theorem: If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then $|\mathbf{x} + \mathbf{y} + \mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 + |\mathbf{z}|^2$



Law of cosines: $|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$



Parallelogram Identity: $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2$

Beyond linearity: dot product

The **dot product** of vectors **x** and **y** is $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta,$

where θ is the angle between **x** and **y**.

The dot product is also called the **scalar product**. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle \mathbf{x}, \mathbf{y} \rangle$.

The vectors **x** and **y** are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$.

Relations between lengths and dot products:

•
$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

•
$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$$

•
$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2 \mathbf{x} \cdot \mathbf{y}$$

Vectors: algebraic approach

An *n*-dimensional coordinate vector is an element of \mathbb{R}^n , i.e., an ordered *n*-tuple (x_1, x_2, \ldots, x_n) of real numbers.

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

$$r\mathbf{a} = (ra_1, ra_2, \dots, ra_n),$$

$$\mathbf{0} = (0, 0, \dots, 0),$$

$$-\mathbf{b} = (-b_1, -b_2, \dots, -b_n),$$

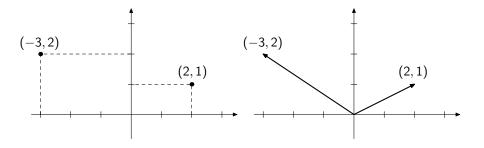
$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n),$$

Properties of vector addition and scalar multiplication:

$$a + b = b + a$$

 $(a + b) + c = a + (b + c)$
 $a + 0 = 0 + a = a$
 $a + (-a) = (-a) + a = 0$
 $r(a + b) = ra + rb$
 $(r + s)a = ra + sa$
 $r(sa) = (rs)a$
 $1a = a$

Cartesian coordinates: geometric meets algebraic



Once we specify an origin O, each point A is associated a position vector \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O. Cartesian coordinates allow us to identify a line, a plane, and space with \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 , respectively.

Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$

The **distance** between vectors/points \mathbf{x} and \mathbf{y} is $\|\mathbf{y} - \mathbf{x}\|$.

Properties of length: $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ (homogeneity) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Scalar product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k.$

Properties of scalar product:
$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry) $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law) $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Relations between lengths and scalar products:

$$\begin{aligned} \|\mathbf{x}\| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\| \|\mathbf{y}\| \qquad \text{(Cauchy-Schwarz inequality)} \\ \|\mathbf{x} - \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{aligned}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$
 for some $0 \le \theta \le \pi$.

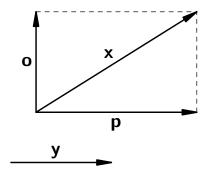
 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if $\theta = 90^{\circ}$). **Problem.** Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{y} = (3, 1)$.

$$\mathbf{x} \cdot \mathbf{y} = 5, \quad \|\mathbf{x}\| = \sqrt{5}, \quad \|\mathbf{y}\| = \sqrt{10}.$$
$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$$

Problem. Find the angle ϕ between vectors $\mathbf{v} = (-2, 1, 3)$ and $\mathbf{w} = (4, 5, 1)$. $\mathbf{v} \cdot \mathbf{w} = 0 \implies \mathbf{v} \perp \mathbf{w} \implies \phi = 90^{\circ}$

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$. Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .



 $\mathbf{p} =$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$. Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} . Namely, $\mathbf{p} = \alpha \mathbf{u}$, where \mathbf{u} is the unit vector of the same direction as \mathbf{y} , and $\alpha = \mathbf{x} \cdot \mathbf{u}$. Indeed, $\mathbf{p} \cdot \mathbf{u} = (\alpha \mathbf{u}) \cdot \mathbf{u} = \alpha(\mathbf{u} \cdot \mathbf{u}) = \alpha ||\mathbf{u}||^2 = \alpha = \mathbf{x} \cdot \mathbf{u}$.

Indeed, $\mathbf{p} \cdot \mathbf{u} = (\alpha \mathbf{u}) \cdot \mathbf{u} = \alpha (\mathbf{u} \cdot \mathbf{u}) = \alpha \|\mathbf{u}\|^2 = \alpha = \mathbf{x} \cdot \mathbf{u}$. Hence $\mathbf{o} \cdot \mathbf{u} = (\mathbf{x} - \mathbf{p}) \cdot \mathbf{u} = \mathbf{x} \cdot \mathbf{u} - \mathbf{p} \cdot \mathbf{u} = 0 \implies \mathbf{o} \perp \mathbf{u}$ $\implies \mathbf{o} \perp \mathbf{y}$.

p is called the **vector projection** of **x** onto **y**, $\alpha = \pm ||\mathbf{p}||$ is called the **scalar projection** of **x** onto **y**.

$$\mathbf{u} = \frac{\mathbf{y}}{\|\mathbf{y}\|}, \qquad \alpha = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|}, \qquad \mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}.$$

Problem. Find the distance from the point $\mathbf{x} = (3, 1)$ to the line spanned by $\mathbf{y} = (2, -1)$.

Consider the decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o} .

$$\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{5}{5} (2, -1) = (2, -1),$$

$$\mathbf{o} = \mathbf{x} - \mathbf{p} = (3, 1) - (2, -1) = (1, 2), \quad \|\mathbf{o}\| = \sqrt{5}.$$

Problem. Find the point on the line y = -x that is closest to the point (3, 4).

The required point is the projection **p** of $\mathbf{v} = (3, 4)$ on the vector $\mathbf{w} = (1, -1)$ spanning the line y = -x.

$$\mathbf{p} = rac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} = rac{-1}{2} (1, -1) = \left(-rac{1}{2}, rac{1}{2}
ight)$$