Linear Algebra Lecture 33:

MATH 304

Bases of eigenvectors.

Diagonalization.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ . (If V is a functional space then eigenvectors are also called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix. In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $det(A - \lambda I) = 0$ has n distinct real roots. Then \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real roots of the characteristic equation. Any λ_i is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_i . By the theorem, vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent. Therefore they form a basis for \mathbb{R}^n .

Theorem If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by Df = f'. Then $e^{\lambda_1 x}, \dots, e^{\lambda_k x}$ are eigenfunctions of D

associated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.

Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional vector space V. Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ be a basis for V. Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the **characteristic polynomial** of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Then $A = UBU^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$. We have to show that $\det(A - \lambda I) = \det(B - \lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$\det(A - \lambda I) = \det(UBU^{-1} - \lambda I)$$

$$= \det(UBU^{-1} - U(\lambda I)U^{-1}) = \det(U(B - \lambda I)U^{-1})$$

$$= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).$$

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of *L* with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator *L* is **diagonalizable** if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as

 $A = UBU^{-1}$, where the matrix B is diagonal;

• there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions. Otherwise A is called **defective**.

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_1 = (-1, 1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_2 = (1, 1)$.
- Eigenvectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for \mathbb{R}^2 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace corresponding to 0 is spanned by $\mathbf{v}_1 = (-1, 1, 0)$.
- The eigenspace corresponding to 2 is spanned by $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$.
- Eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form a basis for \mathbb{R}^3 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Problem. Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

We need to find a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$.

Suppose that $\mathbf{v}_1 = (x_1, y_1)$, $\mathbf{v}_2 = (x_2, y_2)$ is a basis for \mathbb{R}^2 formed by eigenvectors of A, i.e., $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for some $\lambda_i \in \mathbb{R}$. Then we can take

$$B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \qquad U = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}.$$

Note that U is the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2$ to the standard basis.

Problem. Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

Characteristic equation of A:
$$\begin{vmatrix} 4 - \lambda & 3 \\ 0 & 1 - \lambda \end{vmatrix} = 0.$$

$$(4-\lambda)(1-\lambda)=0 \implies \lambda_1=4, \ \lambda_2=1.$$

Associated eigenvectors:
$$\mathbf{v}_1 = (1,0)$$
, $\mathbf{v}_2 = (-1,1)$.

Thus $A = UBU^{-1}$, where

Thus
$$A=UBU^{-1}$$
, where $B=\begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$, $U=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find A^5 .

We know that $A = UBU^{-1}$. where

we know that
$$A = OBO^{-1}$$
, where

 $B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$

Then
$$A^5 = UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}$$

= $UB^5U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

 $=\begin{pmatrix}1024 & -1\\0 & 1\end{pmatrix}\begin{pmatrix}1 & 1\\0 & 1\end{pmatrix}=\begin{pmatrix}1024 & 1023\\0 & 1\end{pmatrix}.$

$$egin{array}{cccc} ig(0&1)'&&ig(0&1)'&&ig(0&1)'&&&ig(0&1)UBU^{-1}UBU^{-1$$

Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find a matrix C

such that $C^2 = A$.

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Suppose that $D^2 = B$ for some matrix D. Let $C = UDU^{-1}$. Then $C^2 = UDU^{-1}UDU^{-1} = UD^2U^{-1} = UBU^{-1} = A$.

We can take
$$D = \begin{pmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{1} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Then
$$C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

There are *two obstructions* to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.

Example 1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

 $\det(A - \lambda I) = (\lambda - 1)^2$. Hence $\lambda = 1$ is the only eigenvalue. The associated eigenspace is the line t(1,0).

Example 2.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

$$\det(A - \lambda I) = \lambda^2 + 1.$$

⇒ no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)