MATH 304
 Linear Algebra

Lecture 33:
Bases of eigenvectors. Diagonalization.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.
(If V is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.
Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct real roots of the characteristic equation. Any λ_{i} is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_{i}. By the theorem, vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

Theorem If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.

Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional vector space V. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for V. Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.
Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We have to show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right) \\
=\operatorname{det}\left(U B U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right) \\
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I) .
\end{gathered}
$$

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.
Otherwise A is called defective.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$.
- Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace corresponding to 0 is spanned by
$\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace corresponding to 2 is spanned by $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$.
- Eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
We need to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.
Suppose that $\mathbf{v}_{1}=\left(x_{1}, y_{1}\right), \mathbf{v}_{2}=\left(x_{2}, y_{2}\right)$ is a basis for \mathbb{R}^{2} formed by eigenvectors of A, i.e., $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ for some $\lambda_{i} \in \mathbb{R}$. Then we can take

$$
B=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad U=\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right) .
$$

Note that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Problem. Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$.
Characteristic equation of $A:\left|\begin{array}{cc}4-\lambda & 3 \\ 0 & 1-\lambda\end{array}\right|=0$.
$(4-\lambda)(1-\lambda)=0 \quad \Longrightarrow \quad \lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{lr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.

We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

There are two obstructions to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.
Example 1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

