MATH 304
 Linear algebra

Lecture 36:
Complex eigenvalues and eigenvectors. Symmetric and orthogonal matrices.

Complex numbers

\mathbb{C} : complex numbers.
Complex number: $z=x+i y$,
where $x, y \in \mathbb{R}$ and $i^{2}=-1$.
$i=\sqrt{-1}$: imaginary unit
Alternative notation: $z=x+y i$.
$x=$ real part of z,
$i y=$ imaginary part of z
$y=0 \Longrightarrow z=x$ (real number)
$x=0 \Longrightarrow z=i y$ (purely imaginary number)

We add and multiply complex numbers as polynomials in i (but keep in mind that $i^{2}=-1$). If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ then

$$
\begin{gathered}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

Examples. • $(1+i)-(3+5 i)=(1-3)+(i-5 i)$
$=-2-4 i$;

- $(1+i)(3+5 i)=1 \cdot 3+i \cdot 3+1 \cdot 5 i+i \cdot 5 i$ $=3+3 i+5 i+5 i^{2}=3+3 i+5 i-5=-2+8 i$;
- $(2+3 i)(2-3 i)=4-9 i^{2}=4+9=13$;
- $i^{3}=-i, \quad i^{4}=1, \quad i^{5}=i$.

Geometric representation

Any complex number $z=x+i y$ is represented by the vector/point $(x, y) \in \mathbb{R}^{2}$.

$x=r \cos \phi, \quad y=r \sin \phi$
$\Longrightarrow z=r(\cos \phi+i \sin \phi)=r e^{i \phi}$.

Given $z=x+i y$, the complex conjugate of z is $\bar{z}=x-i y$. The conjugacy $z \mapsto \bar{z}$ is the reflection of \mathbb{C} in the real line.

$$
\begin{gathered}
z \bar{z}=(x+i y)(x-i y)=x^{2}-(i y)^{2}=x^{2}+y^{2}=|z|^{2} . \\
z^{-1}=\frac{\bar{z}}{|z|^{2}}, \quad(x+i y)^{-1}=\frac{x-i y}{x^{2}+y^{2}} .
\end{gathered}
$$

Fundamental Theorem of Algebra

 Any polynomial of degree $n \geq 1$, with complex coefficients, has exactly n roots (counting with multiplicities).Equivalently, if

$$
p(z)=a_{n} z^{n}+a_{n-1} z+\cdots+a_{1} z+a_{0}
$$

where $a_{i} \in \mathbb{C}$ and $a_{n} \neq 0$, then there exist complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ such that

$$
p(z)=a_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{n}\right) .
$$

Complex eigenvalues/eigenvectors

Example. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) . \quad \operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
Characteristic roots: $\lambda_{1}=i$ and $\lambda_{2}=-i$.
Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}, \\
& \left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{i}=\binom{-i}{1}=-i\binom{1}{i} .
\end{aligned}
$$

$\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^{2}, we consider a complex vector space \mathbb{C}^{2} (all complex numbers are admissible as scalars).
The linear operator $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\mathbf{x})=A \mathbf{x}$ is replaced by the complexified linear operator $F: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, F(\mathbf{x})=A \mathbf{x}$.
The vectors $\mathbf{v}_{1}=(1,-i)$ and $\mathbf{v}_{2}=(1, i)$ form a basis for \mathbb{C}^{2}.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^{T}=A$;
- orthogonal if $A A^{T}=A^{T} A=l$, i.e., $A^{T}=A^{-1}$;
- normal if $A A^{T}=A^{T} A$.

Theorem Let A be an $n \times n$ matrix with real entries. Then
(a) A is normal \Longleftrightarrow there exists an orthonormal basis for \mathbb{C}^{n} consisting of eigenvectors of A; (b) A is symmetric \Longleftrightarrow there exists an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example. $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$.

- A is symmetric.
- A has three eigenvalues: 0,1 , and 2 .
- Associated eigenvectors are $\mathbf{v}_{1}=(-1,0,1)$,
$\mathbf{v}_{2}=(0,1,0)$, and $\mathbf{v}_{3}=(1,0,1)$, respectively.
- Vectors $\frac{1}{\sqrt{2}} \mathbf{v}_{1}, \mathbf{v}_{2}, \frac{1}{\sqrt{2}} \mathbf{v}_{3}$ form an orthonormal basis for \mathbb{R}^{3}.

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ one has

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A^{T} \mathbf{x}=\bar{\lambda} \mathbf{x}
$$

Thus any normal matrix A shares with A^{T} all real eigenvalues and the corresponding eigenvectors. Also, $A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\bar{\lambda}=\lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\bar{\lambda}=\lambda^{-1} \Longleftrightarrow|\lambda|=1$.

Example. $\quad A_{\phi}=\left(\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$.

- $A_{\phi} A_{\psi}=A_{\phi+\psi}$
- $A_{\phi}^{-1}=A_{-\phi}=A_{\phi}^{T}$
- A_{ϕ} is orthogonal
- $\operatorname{det}\left(A_{\phi}-\lambda I\right)=(\cos \phi-\lambda)^{2}+\sin ^{2} \phi$.
- Eigenvalues: $\lambda_{1}=\cos \phi+i \sin \phi=e^{i \phi}$,
$\lambda_{2}=\cos \phi-i \sin \phi=e^{-i \phi}$.
- Associated eigenvectors: $\mathbf{v}_{1}=(1,-i)$, $\mathbf{v}_{2}=(1, i)$.
- Vectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{C}^{2}.

Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ orthogonal matrix.
Theorem There exists an orthonormal basis for \mathbb{R}^{n} such that the matrix of L relative to this basis has a diagonal block structure

$$
\left(\begin{array}{cccc}
D_{ \pm 1} & O & \ldots & O \\
O & R_{1} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & R_{k}
\end{array}\right)
$$

where $D_{ \pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1 , and

$$
R_{j}=\left(\begin{array}{rr}
\cos \phi_{j} & -\sin \phi_{j} \\
\sin \phi_{j} & \cos \phi_{j}
\end{array}\right), \quad \phi_{j} \in \mathbb{R} .
$$

