Linear algebra

Lecture 36: Complex eigenvalues and eigenvectors.

MATH 304

Symmetric and orthogonal matrices.

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy},$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add and multiply complex numbers as polynomials in i (but keep in mind that $i^2=-1$).

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ then $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$ $z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$

Examples. • (1+i) - (3+5i) = (1-3) + (i-5i)= -2-4i;

- $(1+i)(3+5i) = 1 \cdot 3 + i \cdot 3 + 1 \cdot 5i + i \cdot 5i$ = $3+3i+5i+5i^2 = 3+3i+5i-5 = -2+8i$;
 - $(2+3i)(2-3i) = 4-9i^2 = 4+9=13;$
 - $i^3 = -i$, $i^4 = 1$, $i^5 = i$.

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

$$x = r \cos \phi, \quad y = r \sin \phi$$

 $\implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}.$

Given z = x + iy, the **complex conjugate** of z is

$$\bar{z}=x-iy$$
. The conjugacy $z\mapsto \bar{z}$ is the reflection of $\mathbb C$ in the real line.

$$\bar{z}=x-iy$$
. The conjugacy $z\mapsto \bar{z}$ is the reflection of $\mathbb C$ in the real line.

 $z\overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$.

 $z^{-1} = \frac{z}{|z|^2},$ $(x + iy)^{-1} = \frac{x - iy}{x^2 + y^2}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n).$$

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. $det(A - \lambda I) = \lambda^2 + 1$.

Characteristic roots: $\lambda_1 = i$ and $\lambda_2 = -i$.

Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. In which space?

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a complex vector space \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is replaced by the complexified linear operator $F: \mathbb{C}^2 \to \mathbb{C}^2$, $F(\mathbf{x}) = A\mathbf{x}$.

The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^TA = I$, i.e., $A^T = A^{-1}$;
- **normal** if $AA^T = A^TA$.

Theorem Let A be an $n \times n$ matrix with real entries. Then

- (a) A is normal \iff there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A;
- **(b)** A is symmetric \iff there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

• A is symmetric.

- A has three eigenvalues: 0, 1, and 2.
- A has three eigenvalues: 0, 1, and 2
 Associated eigenvectors are Ma = (
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$, $\mathbf{v}_2 = (0, 1, 0)$, and $\mathbf{v}_3 = (1, 0, 1)$, respectively.
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1, \mathbf{v}_2, \frac{1}{\sqrt{2}}\mathbf{v}_3$ form an orthonormal basis for \mathbb{R}^3

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Thus any normal matrix A shares with A^T all real eigenvalues and the corresponding eigenvectors. Also, $A\mathbf{x} = \lambda \mathbf{x} \iff A\overline{\mathbf{x}} = \overline{\lambda} \, \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\overline{\lambda} = \lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\overline{\lambda} = \lambda^{-1} \iff |\lambda| = 1$.

Example. $A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$.

$$\bullet \ \ A_{\phi}A_{\psi}=A_{\phi+\psi}$$

•
$$\det(A_{\phi} - \lambda I) = (\cos \phi - \lambda)^2 + \sin^2 \phi$$
.

• Granualines:
$$\lambda_1 = \cos \phi + i \sin \phi = 0$$

• Eigenvalues:
$$\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$$
, $\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}$.

• Associated eigenvectors:
$$\mathbf{v}_1 = (1, -i)$$
, $\mathbf{v}_2 = (1, i)$.

• Vectors
$$\mathbf{v}_1$$
 and \mathbf{v}_2 form a basis for \mathbb{C}^2 .

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = \begin{pmatrix} \cos \phi_j & -\sin \phi_j \\ \sin \phi_i & \cos \phi_i \end{pmatrix}, \quad \phi_j \in \mathbb{R}.$$