Lecture 37:

MATH 304

Linear algebra

Rotations in space.

Orthogonal matrices

Definition. An $n \times n$ matrix A is called **orthogonal** if $AA^T = A^TA = I$, i.e., $A^T = A^{-1}$.

Example.
$$A = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
.

- A_{ϕ} is orthogonal.
- Eigenvalues: $\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$, $\lambda_2 = \cos \phi i \sin \phi = e^{-i\phi}$.
 - $|\lambda_1| = |\lambda_2| = 1$, $\overline{\lambda_1} = \lambda_2$.
- Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$, $\mathbf{v}_2 = (1, i)$.
 - Vectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for \mathbb{C}^2 .

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = \begin{pmatrix} \cos \phi_j & -\sin \phi_j \\ \sin \phi_i & \cos \phi_i \end{pmatrix}, \quad \phi_j \in \mathbb{R}.$$

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

- (i) A is orthogonal: $A^T = A^{-1}$;
- (ii) columns of A form an orthonormal basis for \mathbb{R}^n ;
- (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix A^TA are dot products of columns of A. Entries of AA^T are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Consider a linear operator $L: \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix.

Theorem The following conditions are equivalent:

- (i) $|L(\mathbf{x})| = |\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$;
- (ii) $L(\mathbf{x}) \cdot L(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$;
- (iii) the matrix A is orthogonal.

Definition. A transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ is called an **isometry** if it preserves distances between points: $|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$.

Theorem Any isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ can be represented as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{x}_0$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and A is an orthogonal matrix.

Classification of 3×3 orthogonal matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix}.$$

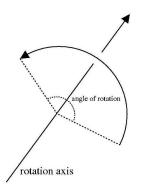
$$A = \text{rotation about a line; } B = \text{reflection in a}$$

$$\text{plane; } C = \text{rotation about a line combined with}$$

reflection in the orthogonal plane. $\det A = 1$. $\det B = \det C = -1$.

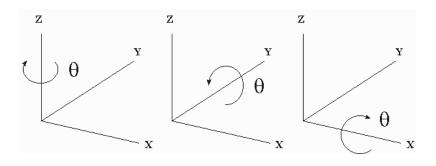
A has eigenvalues 1, $e^{i\phi}$, $e^{-i\phi}$. B has eigenvalues -1, 1, 1. C has eigenvalues -1, $e^{i\phi}$, $e^{-i\phi}$.

Rotations in space



If the axis of rotation is oriented, we can say about *clockwise* or *counterclockwise* rotations (with respect to the view from the positive semi-axis).

Clockwise rotations about coordinate axes



$$\begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

Problem. Find the matrix of the rotation by 90° about the line spanned by the vector $\mathbf{c} = (1, 2, 2)$. The rotation is assumed to be counterclockwise when looking from the tip of \mathbf{c} .

$$B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 is the matrix of (counterclockwise) rotation by 90° about the z-axis.

We need to find an orthonormal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ such that \mathbf{v}_3 has the same direction as \mathbf{c} . Also, the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ should obey the same hand rule as the standard basis. Then B is the matrix of the given rotation relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Let U denote the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis (columns of U are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$). Then the desired matrix is $A = UBU^{-1}$.

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is going to be an orthonormal basis, the matrix U will be orthogonal. Then $U^{-1} = U^T$ and $A = UBU^T$.

Remark. The basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the same hand rule as the standard basis if and only if det U > 0.

Hint. Vectors $\mathbf{a}=(-2,-1,2)$, $\mathbf{b}=(2,-2,1)$, and $\mathbf{c}=(1,2,2)$ are orthogonal. We have $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=3$, hence $\mathbf{v}_1=\frac{1}{3}\mathbf{a}$,

We have $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 3$, hence $\mathbf{v}_1 = \frac{1}{3}\mathbf{c}$ $\mathbf{v}_2 = \frac{1}{3}\mathbf{b}$, $\mathbf{v}_3 = \frac{1}{3}\mathbf{c}$ is an orthonormal basis.

Transition matrix: $U = \frac{1}{3}\begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$.

$$\det U = \frac{1}{27} \begin{vmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{vmatrix} = \frac{1}{27} \cdot 27 = 1.$$
 (In the case $\det U = -1$, we should interchange vectors \mathbf{v}_1 and \mathbf{v}_2 .)

$$A = UBU^T$$

$$=\frac{1}{3}\begin{pmatrix} -2 & 2 & 1\\ -1 & -2 & 2\\ 2 & 1 & 2 \end{pmatrix}\begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \frac{1}{3}\begin{pmatrix} -2 & -1 & 2\\ 2 & -2 & 1\\ 1 & 2 & 2 \end{pmatrix}$$

 $= \frac{1}{9} \begin{pmatrix} 1 & -4 & 8 \\ 8 & 4 & 1 \\ -4 & 7 & 4 \end{pmatrix}.$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$=\frac{1}{9}\begin{pmatrix}2&2&1\\-2&1&2\\1&-2&2\end{pmatrix}\begin{pmatrix}-2&-1&2\\2&-2&1\\1&2&2\end{pmatrix}$$

$$-1 \ 2 \ -2 \ 1$$

$$U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$
 is an orthogonal matrix.

 $\det U = 1 \implies U$ is a rotation matrix.

Problem. (a) Find the axis of the rotation.(b) Find the angle of the rotation.

The axis is the set of points $\mathbf{x} \in \mathbb{R}^n$ such that $U\mathbf{x} = \mathbf{x} \iff (U - I)\mathbf{x} = \mathbf{0}$. To find the axis, we apply row reduction to the matrix 3(U - I):

$$3U - 3I = \begin{pmatrix} -5 & 2 & 1 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 3 & 0 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & -6 & 2 \\ 0 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{pmatrix}$$
Thus $U\mathbf{x} = \mathbf{x} \iff \begin{cases} x - z/3 = 0 \\ y - z/3 = 0 \end{cases}$

The general solution is x = y = t/3, z = t, $t \in \mathbb{R}$.

 \implies **d** = (1,1,3) is the direction of the axis.

 $\rightarrow \begin{pmatrix} 1 & -1 & 0 \\ -1 & -5 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & -6 & 2 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow$

$$U = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1 \\ -1 & -2 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$

Let ϕ be the angle of rotation. Then the eigenvalues of U are 1, $e^{i\phi}$, and $e^{-i\phi}$. Therefore $\det(U-\lambda I)=(1-\lambda)(e^{i\phi}-\lambda)(e^{-i\phi}-\lambda)$.

Besides, $\det(U - \lambda I) = -\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3$, where $c_1 = \operatorname{tr} U$ (the sum of diagonal entries). It follows that

$${
m tr}\ U = 1 + e^{i\phi} + e^{-i\phi} = 1 + 2\cos\phi.$$

$$\operatorname{tr} U = -2/3 \implies \cos \phi = -5/6 \implies \phi \approx 146.44^{\circ}$$