Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

Problem 2 (30 pts.) Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

- (i) Evaluate the determinant of the matrix A.
- (ii) Find the inverse matrix A^{-1} .

Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

- (i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.
- (ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0.
- (iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.
- (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 z^2 = 0$.

Problem 4 (30 pts.) Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

- (i) Find the rank and the nullity of the matrix B.
- (ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^4 .

Bonus Problem 5 (20 pts.) Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Bonus Problem 6 (20 pts.) Let V and W be subspaces of the vector space \mathbb{R}^n such that $V \cup W$ is also a subspace of \mathbb{R}^n . Show that $V \subset W$ or $W \subset V$.