Math 311-503

Test 1

Problem 1 (30 pts.) Let Π be the plane in \mathbb{R}^3 passing through the points (1, 0, 0), (0, 0, 1), and (0, 1, 2). Let ℓ be the line in \mathbb{R}^3 passing through the points (1, 0, 1) and (-2, 0, -2).

(i) Find a parametric representation for the line ℓ .

(ii) Find a parametric representation for the plane Π .

(iii) Find the point where the line ℓ intersects the plane Π .

(iv) Determine whether the plane 2x + y + 2z = 9 is parallel to the plane Π .

(v) Find the angle between the line ℓ and the plane 2x + y + 2z = 9.

(vi) Find the distance from the origin to the plane 2x + y + 2z = 9.

Problem 2 (20 pts.) Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Problem 3 (20 pts.) Let $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Compute the matrices A^2 , A^3 , and q(A), where $q(x) = 2x^2 - 3x + 2$.

Problem 4 (30 pts.) Let $B = \begin{pmatrix} 0 & 5 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ 1 & -3 & 4 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

(i) Evaluate the determinant of the matrix B.

(ii) Find the inverse matrix B^{-1} .

Bonus Problem 5 (25 pts.) Let P be the parallelogram bounded by the following two pairs of parallel lines in \mathbb{R}^2 : x + y = 1, x + y = 2, 2x + 3y = 0, and 2x + 3y = 5.

- (i) Find the vertices of P.
- (ii) Find the angles of P.
- (iii) Find the area of P.