Test 1

Problem 1 (30 pts.) Let Π be the plane in \mathbb{R}^{3} passing through the points $(1,0,0),(0,0,1)$, and $(0,1,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the points $(1,0,1)$ and $(-2,0,-2)$.
(i) Find a parametric representation for the line ℓ.
(ii) Find a parametric representation for the plane Π.
(iii) Find the point where the line ℓ intersects the plane Π.
(iv) Determine whether the plane $2 x+y+2 z=9$ is parallel to the plane Π.
(v) Find the angle between the line ℓ and the plane $2 x+y+2 z=9$.
(vi) Find the distance from the origin to the plane $2 x+y+2 z=9$.

Problem $2(20$ pts.) Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Problem 3 (20 pts.) Let $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Compute the matrices A^{2}, A^{3}, and $q(A)$, where $q(x)=2 x^{2}-3 x+2$.

Problem 4 ($\mathbf{3 0}$ pts.) Let $B=\left(\begin{array}{rrrr}0 & 5 & -1 & 0 \\ 0 & 3 & 0 & 2 \\ 1 & -3 & 4 & -1 \\ 0 & 1 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix B.
(ii) Find the inverse matrix B^{-1}.

Bonus Problem 5 (25 pts.) Let P be the parallelogram bounded by the following two pairs of parallel lines in $\mathbb{R}^{2}: x+y=1, x+y=2,2 x+3 y=0$, and $2 x+3 y=5$.
(i) Find the vertices of P.
(ii) Find the angles of P.
(iii) Find the area of P.

