
Math 311-503 February 13, 2007

Test 1: Solutions

Problem 1 (30 pts.) Let Π be the plane in R
3 passing through the points (1, 0, 0), (0, 0, 1),

and (0, 1, 2). Let ℓ be the line in R
3 passing through the points (1, 0, 1) and (−2, 0,−2).

(i) Find a parametric representation for the line ℓ.

Since the line ℓ passes through the points u = (1, 0, 1) and w = (−2, 0,−2), its direction is
determined by the vector v = w − u = (−3, 0,−3). The vector u = (1, 0, 1) is a scalar multiple of
v, hence it also determines the direction of ℓ. This leads to a parametric representation tu + u. It is
easy to see that the line passes through the origin (take t = −1). Therefore another representation is
su = s(1, 0, 1).

(ii) Find a parametric representation for the plane Π.

Since the plane Π contains the points a = (1, 0, 0), b = (0, 0, 1), and c = (0, 1, 2), the vectors
b−a = (−1, 0, 1) and c−a = (−1, 1, 2) are parallel to Π. Clearly, b−a is not parallel to c−a. Hence
we get a parametric representation t1(b − a) + t2(c − a) + a = t1(−1, 0, 1) + t2(−1, 1, 2) + (1, 0, 0).

(iii) Find the point where the line ℓ intersects the plane Π.

Let x0 be the point of intersection. Then x0 = t1(−1, 0, 1)+t2(−1, 1, 2)+(1, 0, 0) for some t1, t2 ∈ R

and also x0 = s(1, 0, 1) for some s ∈ R. It follows that







−t1 − t2 + 1 = s,
t2 = 0,
t1 + 2t2 = s.

Solving this system of linear equations, we obtain that t1 = s = 1/2, t2 = 0. Hence x0 = s(1, 0, 1) =
(1/2, 0, 1/2).

(iv) Determine whether the plane 2x + y + 2z = 9 is parallel to the plane Π.

The vector p = (2, 1, 2) is orthogonal to the plane 2x+ y +2z = 9. Therefore this plane is parallel
to the plane Π if and only if the vectors b− a = (−1, 0, 1) and c− a = (−1, 1, 2) are orthogonal to p.
We have that

(b − a) · p = (−1, 0, 1) · (2, 1, 2) = −1 · 2 + 0 · 1 + 1 · 2 = 0,

(c − a) · p = (−1, 1, 2) · (2, 1, 2) = −1 · 2 + 1 · 1 + 2 · 2 = 3.

Thus c − a is not orthogonal to p. Consequently, the two planes are not parallel.

Alternative solution: Any plane parallel to the plane 2x + y + 2z = 9 is given by the equation
2x + y + 2z = c or, equivalently, p · x = c, where p = (2, 1, 2), x = (x, y, z), and c is a constant.
Therefore the plane Π is parallel to the plane 2x + y + 2z = 9 if and only if p · a = p · b = p · c. We
have that

p · a = (2, 1, 2) · (1, 0, 0) = 2,

p · b = (2, 1, 2) · (0, 0, 1) = 2,

p · c = (2, 1, 2) · (0, 1, 2) = 5.

Since p · a 6= p · c, the two planes are not parallel.
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(v) Find the angle between the line ℓ and the plane 2x + y + 2z = 9.

Let φ denote the angle between the vectors u = (1, 0, 1) and p = (2, 1, 2). Then

cos φ =
u · p
|u| |p| =

1 · 2 + 0 · 1 + 1 · 2√
12 + 02 + 12

√
22 + 12 + 22

=
4√

2
√

9
=

2
√

2

3
.

Note that 0 < φ < π/2 as cos φ > 0. Besides,

sinφ =
√

1 − cos2 φ =

√

1 −
(

2
√

2

3

)2

=

√

1 − 8

9
=

√

1

9
=

1

3
.

Since the vector u is parallel to the line ℓ while the vector p is orthogonal to the plane 2x+y+2z = 9,
the angle between the line and the plane is equal to

π

2
− φ =

π

2
− arcsin

1

3
= arccos

1

3
.

(vi) Find the distance from the origin to the plane 2x + y + 2z = 9.

The distance from a point (x0, y0, z0) to the plane 2x + y + 2z = 9 is equal to

|2x0 + y0 + 2z0 − 9|√
22 + 12 + 22

=
|2x0 + y0 + 2z0 − 9|

3
.

In particular, the distance from the origin to the plane is equal to
9

3
= 3.

Problem 2 (20 pts.) Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3,
and p(3) = 7.

Let p(x) = ax2 + bx + c. Then p(1) = a + b + c, p(2) = 4a + 2b + c, and p(3) = 9a + 3b + c. The
coefficients a, b, and c have to be chosen so that







a + b + c = 1,
4a + 2b + c = 3,
9a + 3b + c = 7.

We solve this system of linear equations using elementary operations:







a + b + c = 1
4a + 2b + c = 3
9a + 3b + c = 7

⇐⇒







a + b + c = 1
3a + b = 2
9a + 3b + c = 7

⇐⇒







a + b + c = 1
3a + b = 2
8a + 2b = 6

⇐⇒







a + b + c = 1
3a + b = 2
4a + b = 3

⇐⇒







a + b + c = 1
3a + b = 2
a = 1

⇐⇒







a + b + c = 1
b = −1
a = 1

⇐⇒







c = 1
b = −1
a = 1

Thus the desired polynomial is p(x) = x2 − x + 1.

Problem 3 (20 pts.) Let A =





1 1 2
0 1 1
0 0 1



. Compute the matrices A2, A3, and q(A),

where q(x) = 2x2 − 3x + 2.
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A2 = AA =





1 1 2
0 1 1
0 0 1









1 1 2
0 1 1
0 0 1



 =





1 2 5
0 1 2
0 0 1



 ,

A3 = A2A =





1 2 5
0 1 2
0 0 1









1 1 2
0 1 1
0 0 1



 =





1 3 9
0 1 3
0 0 1



 ,

q(A) = 2A2 − 3A + 2I = 2





1 2 5
0 1 2
0 0 1



 − 3





1 1 2
0 1 1
0 0 1



 + 2





1 0 0
0 1 0
0 0 1



 =





1 1 4
0 1 1
0 0 1



 .

Problem 4 (30 pts.) Let B =









0 5 −1 0
0 3 0 2
1 −3 4 −1
0 1 0 1









.

(i) Evaluate the determinant of the matrix B.

The determinant can be easily evaluated using column expansions. First we expand the determi-
nant of B by the first column:

∣

∣

∣

∣

∣

∣

∣

∣

0 5 −1 0
0 3 0 2
1 −3 4 −1
0 1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

5 −1 0
3 0 2
1 0 1

∣

∣

∣

∣

∣

∣

.

Then we expand this new determinant by the second column:

detB =

∣

∣

∣

∣

∣

∣

5 −1 0
3 0 2
1 0 1

∣

∣

∣

∣

∣

∣

= −(−1) ·
∣

∣

∣

∣

3 2
1 1

∣

∣

∣

∣

=

∣

∣

∣

∣

3 2
1 1

∣

∣

∣

∣

= 3 · 1 − 2 · 1 = 1.

Another way to evaluate detB is to reduce the matrix B to the identity matrix using elementary
row operations (see below). This requires much more work but we are going to do it anyway, to find
the inverse of B.

(ii) Find the inverse matrix B−1.

First we merge the matrix B with the identity matrix into one 4-by-8 matrix:









0 5 −1 0 1 0 0 0
0 3 0 2 0 1 0 0
1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1









.

Then we apply elementary row operations to this matrix until the left part becomes the identity
matrix.

Interchange the third row with the first row:









0 5 −1 0 1 0 0 0
0 3 0 2 0 1 0 0
1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1









→









1 −3 4 −1 0 0 1 0
0 3 0 2 0 1 0 0
0 5 −1 0 1 0 0 0
0 1 0 1 0 0 0 1









.
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Interchange the fourth row with the second row:









1 −3 4 −1 0 0 1 0
0 3 0 2 0 1 0 0
0 5 −1 0 1 0 0 0
0 1 0 1 0 0 0 1









→









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 5 −1 0 1 0 0 0
0 3 0 2 0 1 0 0









.

Subtract 5 times the second row from the third row:








1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 5 −1 0 1 0 0 0
0 3 0 2 0 1 0 0









→









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 3 0 2 0 1 0 0









.

Subtract 3 times the second row from the fourth row:








1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 3 0 2 0 1 0 0









→









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 0 0 −1 0 1 0 −3









.

Multiply the fourth row by −1:









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 0 0 −1 0 1 0 −3









→









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 0 0 1 0 −1 0 3









.

Add 5 times the fourth row to the third row:








1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 −5 1 0 0 −5
0 0 0 1 0 −1 0 3









→









1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









.

Subtract the fourth row from the second row:








1 −3 4 −1 0 0 1 0
0 1 0 1 0 0 0 1
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









→









1 −3 4 −1 0 0 1 0
0 1 0 0 0 1 0 −2
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









.

Add the fourth row to the first row:








1 −3 4 −1 0 0 1 0
0 1 0 0 0 1 0 −2
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









→









1 −3 4 0 0 −1 1 3
0 1 0 0 0 1 0 −2
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









.

Multiply the third row by −1:









1 −3 4 0 0 −1 1 3
0 1 0 0 0 1 0 −2
0 0 −1 0 1 −5 0 10
0 0 0 1 0 −1 0 3









→









1 −3 4 0 0 −1 1 3
0 1 0 0 0 1 0 −2
0 0 1 0 −1 5 0 −10
0 0 0 1 0 −1 0 3









.
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Subtract 4 times the third row from the first row:








1 −3 4 0 0 −1 1 3
0 1 0 0 0 1 0 −2
0 0 1 0 −1 5 0 −10
0 0 0 1 0 −1 0 3









→









1 −3 0 0 4 −21 1 43
0 1 0 0 0 1 0 −2
0 0 1 0 −1 5 0 −10
0 0 0 1 0 −1 0 3









.

Add 3 times the second row to the first row:








1 −3 0 0 4 −21 1 43
0 1 0 0 0 1 0 −2
0 0 1 0 −1 5 0 −10
0 0 0 1 0 −1 0 3









→









1 0 0 0 4 −18 1 37
0 1 0 0 0 1 0 −2
0 0 1 0 −1 5 0 −10
0 0 0 1 0 −1 0 3









.

Finally the left part of our 4-by-8 matrix is transformed into the identity matrix. Therefore the
current right side is the inverse matrix of B. Thus

B−1 =









4 −18 1 37
0 1 0 −2

−1 5 0 −10
0 −1 0 3









.

As a byproduct, we can evaluate the determinant of B. We have transformed B into the identity
matrix using elementary row operations. These included two row exchanges and two row multipli-
cations, both times by −1. It follows that the determinant of B is equal to the determinant of the
identity matrix: detB = det I = 1.

Bonus Problem 5 (25 pts.) Let P be the parallelogram bounded by the following two
pairs of parallel lines in R

2: x + y = 1, x + y = 2, 2x + 3y = 0, and 2x + 3y = 5.

(i) Find the vertices of P .

Let x1 = (x1, y1) be the intersection point of the lines x+y = 1 and 2x+3y = 0. Let x2 = (x2, y2)
be the intersection point of the lines x + y = 2 and 2x + 3y = 0. Let x3 = (x3, y3) be the intersection
point of the lines x + y = 2 and 2x + 3y = 5. Let x4 = (x4, y4) be the intersection point of the lines
x + y = 1 and 2x + 3y = 5.

Clearly, the points x1, x2, x3, and x4 are vertices of the parallelogram P . Their coordinates can
be found from the following systems of linear equations:

{

x1 + y1 = 1,
2x1 + 3y1 = 0;

{

x2 + y2 = 2,
2x2 + 3y2 = 0;

{

x3 + y3 = 2,
2x3 + 3y3 = 5;

{

x4 + y4 = 1,
2x4 + 3y4 = 5.

Solving them we obtain that x1 = (3,−2), x2 = (6,−4), x3 = (1, 1), and x4 = (−2, 3).

(ii) Find the angles of P .

The vertices x1 and x2 both lie on the line 2x + 3y = 0, hence the segment x1x2 is a side of the
parallelogram P . Similarly, the segments x2x3, x3x4, and x1x4 are the other sides of P . Let α be
the angle of P at the vertex x1. Then α is the angle between the vectors x2 − x1 = (3,−2) and
x4 − x1 = (−5, 5). It follows that

cos α =
(x2 − x1) · (x4 − x1)

|x2 − x1| |x4 − x1|
=

3 · (−5) + (−2) · 5
√

32 + (−2)2
√

(−5)2 + 52
=

−25√
13

√
50

= − 5√
26

.

Thus two angles of the parallelogram P are equal to α = arccos(−5/
√

26). The other two angles are
equal to π − α = arccos(5/

√
26).
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Alternative solution: Each of the lines x+y = 1, x+y = 2, 2x+3y = 0, and 2x+3y = 5 contains
one side of the parallelogram P . Since the vector p1 = (1, 1) is orthogonal to the lines x + y = 1 and
x+y = 2 while the vector p2 = (2, 3) is orthogonal to the lines 2x+3y = 0 and 2x+3y = 5, it follows
that the angle β between p1 and p2 is equal to an angle of the parallelogram. We have that

cos β =
p1 · p2

|p1| |p2|
=

1 · 2 + 1 · 3√
12 + 12

√
22 + 32

=
5√

2
√

13
=

5√
26

.

Thus two angles of the parallelogram P are equal to β = arccos(5/
√

26). The other two angles are
equal to π − β = arccos(−5/

√
26).

(iii) Find the area of P .

Since the vectors x2 − x1 = (3,−2) and x4 − x1 = (−5, 5) are represented by adjacent sides of P ,
the area of P is the absolute value of the following determinant:

∣

∣

∣

∣

3 −2
−5 5

∣

∣

∣

∣

= 3 · 5 − (−2) · (−5) = 15 − 10 = 5.

Thus the area of the parallelogram P is equal to 5.

Alternative solution: Since the vectors x2 − x1 = (3,−2) and x4 − x1 = (−5, 5) are represented
by adjacent sides of P and α = arccos(−5/

√
26) is the angle between these sides, the area of the

parallelogram is equal to

|x2 − x1| |x4 − x1| sin α =
√

13
√

50 sinα = 5
√

26 sinα = 5
√

26
√

1 − cos2 α

= 5
√

26

√

1 −
(

− 5√
26

)2

= 5
√

26

√

1

26
= 5.

x1

x2

x3

x4

x

y
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