Math 311-503

Spring 2007

Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Let \mathcal{P}_2 be the vector space of all polynomials (with real coefficients) of degree at most 2. Determine which of the following subsets of \mathcal{P}_2 are vector subspaces. Briefly explain.

- (i) The set S_1 of polynomials $p(x) \in \mathcal{P}_2$ such that p(0) = 0.
- (ii) The set S_2 of polynomials $p(x) \in \mathcal{P}_2$ such that p(0) = 0 and p(1) = 0.
- (iii) The set S_3 of polynomials $p(x) \in \mathcal{P}_2$ such that p(0) = 0 or p(1) = 0.
- (iv) The set S_4 of polynomials $p(x) \in \mathcal{P}_2$ such that $(p(0))^2 + 2(p(1))^2 + (p(2))^2 = 0$.

Problem 2 (20 pts.) Let *L* be the linear operator on \mathbb{R}^2 given by

$$L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}2 & -1\\-3 & 2\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$$

Find the matrix of the operator L relative to the basis $\mathbf{v}_1 = (1, 1), \mathbf{v}_2 = (1, -1)$.

Problem 3 (30 pts.) Consider a linear operator $f : \mathbb{R}^3 \to \mathbb{R}^3$, $f(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 5 & 3 & 5\\ 2 & 1 & 2\\ 1 & 0 & 1 \end{pmatrix}.$$

(i) Find a basis for the image of f.

(ii) Find a basis for the null-space of f.

Problem 4 (30 pts.) Let
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix B.

(ii) For each eigenvalue of B, find an associated eigenvector.

(iii) Is there a basis for \mathbb{R}^3 consisting of eigenvectors of B?

Bonus Problem 5 (25 pts.) Let f_1, f_2, f_3, \ldots be the Fibonacci numbers defined by $f_1 = f_2 = 1, f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$. Find $\lim_{n \to \infty} \frac{f_{n+1}}{f_n}$.