Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.$) \quad$ Let \mathcal{P}_{2} be the vector space of all polynomials (with real coefficients) of degree at most 2. Determine which of the following subsets of \mathcal{P}_{2} are vector subspaces. Briefly explain.
(i) The set S_{1} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$.
(ii) The set S_{2} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$ and $p(1)=0$.
(iii) The set S_{3} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$ or $p(1)=0$.
(iv) The set S_{4} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $(p(0))^{2}+2(p(1))^{2}+(p(2))^{2}=0$.

Problem 2 (20 pts.) Let L be the linear operator on \mathbb{R}^{2} given by

$$
L\binom{x}{y}=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of the operator L relative to the basis $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(1,-1)$.
Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{lll}
5 & 3 & 5 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis for the image of f.
(ii) Find a basis for the null-space of f.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) For each eigenvalue of B, find an associated eigenvector.
(iii) Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of B ?

Bonus Problem 5 (25 pts.) Let $f_{1}, f_{2}, f_{3}, \ldots$ be the Fibonacci numbers defined by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. Find $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$.

