Sample problems for Test 2: Solutions
 Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.$) \quad$ Let \mathcal{P}_{2} be the vector space of all polynomials (with real coefficients) of degree at most 2. Determine which of the following subsets of \mathcal{P}_{2} are vector subspaces. Briefly explain.
(i) The set S_{1} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$.

The set S_{1} is not empty because it contains the zero polynomial. S_{1} is a subspace of \mathcal{P}_{2} since it is closed under addition and scalar multiplication. Alternatively, S_{1} is the null-space of a linear functional $\ell: \mathcal{P}_{2} \rightarrow \mathbb{R}$ given by $\ell[p(x)]=p(0)$.
(ii) The set S_{2} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$ and $p(1)=0$.

The set S_{2} is a subspace of \mathcal{P}_{2} for the same reason as the set S_{1}.
(iii) The set S_{3} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $p(0)=0$ or $p(1)=0$.

The set S_{3} is not a subspace because it is not closed under addition. For example, the polynomials $p_{1}(x)=x$ and $p_{2}(x)=x-1$ belong to S_{3} while their sum $p(x)=2 x-1$ is not in S_{3}.
(iv) The set S_{4} of polynomials $p(x) \in \mathcal{P}_{2}$ such that $(p(0))^{2}+2(p(1))^{2}+(p(2))^{2}=0$.

A polynomial $p(x) \in \mathcal{P}_{2}$ belongs to S_{4} if and only if $p(0)=p(1)=p(2)=0$. Since the degree of $p(x)$ is at most 2 , this means that the set S_{4} consists of a single element, the zero polynomial. Thus S_{4} is the trivial subspace of \mathcal{P}_{2}.

Problem $2\left(20\right.$ pts.) Let L be the linear operator on \mathbb{R}^{2} given by

$$
L\binom{x}{y}=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of the operator L relative to the basis $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(1,-1)$.
Let B denote the matrix of L relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$. The columns of B are coordinates of the vectors $L\left(\mathbf{v}_{1}\right)$ and $L\left(\mathbf{v}_{2}\right)$ relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$. We obtain that

$$
L\left(\mathbf{v}_{1}\right)=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\binom{1}{1}=\binom{1}{-1}, \quad L\left(\mathbf{v}_{2}\right)=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\binom{1}{-1}=\binom{3}{-5} .
$$

Hence $L\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}=0 \mathbf{v}_{1}+1 \mathbf{v}_{2}$. To determine the coordinates (a, b) of the vector $L\left(\mathbf{v}_{2}\right)$ relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, we need to solve the vector equation $a \mathbf{v}_{1}+b \mathbf{v}_{2}=L\left(\mathbf{v}_{2}\right)$, which is equivalent to the system

$$
\left\{\begin{array}{l}
a+b=3, \\
a-b=-5 .
\end{array}\right.
$$

Solving the system, we find that $a=-1, b=4$. Thus $L\left(\mathbf{v}_{2}\right)=-\mathbf{v}_{1}+4 \mathbf{v}_{2}$ and

$$
B=\left(\begin{array}{rr}
0 & -1 \\
1 & 4
\end{array}\right)
$$

Alternative solution: Let $A=\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$ and let B denote the matrix of L relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$. Let U denote the 2-by- 2 matrix whose columns are vectors \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
U=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

The matrix U can be used to convert coordinates relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ into the standard coordinates in \mathbb{R}^{2}. It follows that $B=U^{-1} A U$. Using the formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

we obtain that

$$
U^{-1}=-\frac{1}{2}\left(\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2} U .
$$

Then

$$
\begin{aligned}
& B=U^{-1} A U=\frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \\
= & \frac{1}{2}\left(\begin{array}{rr}
-1 & 1 \\
5 & -3
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rr}
0 & -2 \\
2 & 8
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 4
\end{array}\right) .
\end{aligned}
$$

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{lll}
5 & 3 & 5 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis for the image of f.

The image of the linear operator f is the subspace of \mathbb{R}^{3} spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(5,2,1)$ and $\mathbf{v}_{2}=(3,1,0)$ (the third column coincides with the first one). Clearly, the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are not parallel. Hence they are linearly independent. Thus $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.
(ii) Find a basis for the null-space of f.

The null-space of f is the set of solutions of the vector equation $A \mathbf{x}=\mathbf{0}$. To solve the equation, we shall convert the matrix A to reduced echelon form. Since the right-hand side of the equation is the zero vector, elementary row operations do not change the solution set.

First we interchange the first row of the matrix A with the third one:

$$
\left(\begin{array}{lll}
5 & 3 & 5 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
5 & 3 & 5
\end{array}\right) .
$$

Then we subtract 2 times the first row from the second row and 5 times the first row from the third row:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
5 & 3 & 5
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
5 & 3 & 5
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 3 & 0
\end{array}\right)
$$

Finally, we subtract 3 times the second row from the third row:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

It follows that the vector equation $A \mathbf{x}=\mathbf{0}$ is equivalent to the system $x+z=y=0$, where $\mathbf{x}=(x, y, z)$. The general solution of the system is $x=-t, y=0, z=t$ for an arbitrary $t \in \mathbb{R}$. That is, $\mathbf{x}=(-t, 0, t)=t(-1,0,1)$, where $t \in \mathbb{R}$. Thus the null-space of the linear operator f is the line $t(-1,0,1)$. The vector $(-1,0,1)$ is a basis for this line.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation $\operatorname{det}(B-\lambda I)=0$. The determinant is easily evaluated using the expansion by the third row:

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
=(1-\lambda)\left((1-\lambda)^{2}-1\right)=-\lambda(1-\lambda)(2-\lambda) .
\end{gathered}
$$

Hence the matrix B has three eigenvalues: 0,1 , and 2 .
(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector $\mathbf{x}=(x, y, z)$ of B associated with an eigenvalue λ is a nonzero solution of the vector equation $(B-\lambda I) \mathbf{x}=\mathbf{0}$.

First consider the case $\lambda=0$. We obtain that

$$
B \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x+y=0 \\
z=0
\end{array}\right.
$$

The general solution is $x=-t, y=t, z=0$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector of B associated with the eigenvalue 0 .

Next consider the case $\lambda=1$. We obtain that

$$
(B-I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x+z=0, \\
y+z=0
\end{array}\right.
$$

The general solution is $x=-t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,-1,1)$ is an eigenvector of B associated with the eigenvalue 1 .

It remains to consider the case $\lambda=2$. In this case,

$$
(B-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\Longleftrightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}
x-y=0 \\
z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=0$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,0)$ is an eigenvector of B associated with the eigenvalue 2 .
(iii) Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of B ?

The vectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(-1,-1,1)$, and $\mathbf{v}_{3}=(1,1,0)$ are eigenvectors of the matrix B associated with distinct eigenvalues 0,1 , and 2, respectively. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}.

Bonus Problem 5 (25 pts.) Let $f_{1}, f_{2}, f_{3}, \ldots$ be the Fibonacci numbers defined by $f_{1}=f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. Find $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}$.

For any integer $n \geq 1$ define a two-dimensional vector $\mathbf{v}_{n}=\left(f_{n+1}, f_{n}\right)$. It follows from the definition of the Fibonacci numbers that

$$
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
$$

That is, $\mathbf{v}_{n+1}=A \mathbf{v}_{n}$ for $n=1,2, \ldots$, where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

In particular, $\mathbf{v}_{2}=A \mathbf{v}_{1}, \mathbf{v}_{3}=A \mathbf{v}_{2}=A^{2} \mathbf{v}_{1}, \mathbf{v}_{4}=A \mathbf{v}_{3}=A^{3} \mathbf{v}_{1}$, and so on. In general, $\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}$ for $n=2,3, \ldots$.

The characteristic equation for the matrix A is $\lambda^{2}-\lambda-1=0$. This equation has two roots $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}$. It is easy to see that $\lambda_{1}>1$ and $-1<\lambda_{2}<0$. Let $\mathbf{w}_{1}=\left(x_{1}, y_{1}\right)$ and $\mathbf{w}_{2}=\left(x_{2}, y_{2}\right)$ be eigenvectors of A associated with the eigenvalues λ_{1} and λ_{2}, respectively. The vectors \mathbf{w}_{1} and \mathbf{w}_{2} are linearly independent, hence they form a basis for \mathbb{R}^{2}. In particular, the vector $\mathbf{v}_{1}=(1,1)$ is represented as $a \mathbf{w}_{1}+b \mathbf{w}_{2}$ for some $a, b \in \mathbb{R}$. Note that $a \neq 0$ and $b \neq 0$ because \mathbf{v}_{1} is not an eigenvector of A.

Since $\mathbf{v}_{1}=a \mathbf{w}_{1}+b \mathbf{w}_{2}$, it follows that

$$
\mathbf{v}_{n}=A^{n-1} \mathbf{v}_{1}=A^{n-1}\left(a \mathbf{w}_{1}+b \mathbf{w}_{2}\right)=a A^{n-1} \mathbf{w}_{1}+b A^{n-1} \mathbf{w}_{2}=a \lambda_{1}^{n-1} \mathbf{w}_{1}+b \lambda_{2}^{n-1} \mathbf{w}_{2}
$$

for $n \geq 2$. Then $f_{n}=a \lambda_{1}^{n-1} y_{1}+b \lambda_{2}^{n-1} y_{2}$. Therefore

$$
\frac{f_{n+1}}{f_{n}}=\frac{a \lambda_{1}^{n} y_{1}+b \lambda_{2}^{n} y_{2}}{a \lambda_{1}^{n-1} y_{1}+b \lambda_{2}^{n-1} y_{2}}=\lambda_{1} \frac{a y_{1}+b\left(\lambda_{2} / \lambda_{1}\right)^{n} y_{2}}{a y_{1}+b\left(\lambda_{2} / \lambda_{1}\right)^{n-1} y_{2}}
$$

Observe that $y_{1} \neq 0$ because (1,0) is not an eigenvector of A. Besides, $\left|\lambda_{2} / \lambda_{1}\right|<1$ since $\lambda_{1}>1$ and $\left|\lambda_{2}\right|<1$. Thus

$$
\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\lambda_{1}=\frac{1+\sqrt{5}}{2}
$$

