Test 2: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

It is easy to see that each of the sets S_{1}, S_{2}, S_{3}, and S_{4} contains the zero vector $(0,0,0)$ and all these sets are closed under scalar multiplication.

The set S_{1} is the union of three planes $x=0, y=0$, and $z=0$. It is not closed under addition as the following example shows: $(1,1,0)+(0,0,1)=(1,1,1)$.
S_{2} is a plane passing through the origin. Obviously, it is closed under addition.
The condition $y^{2}+z^{2}=0$ is equivalent to $y=z=0$. Hence S_{3} is a line passing through the origin. It is closed under addition.

Since $y^{2}-z^{2}=(y-z)(y+z)$, the set S_{4} is the union of two planes $y-z=0$ and $y+z=0$. The following example shows that S_{4} is not closed under addition: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Thus S_{2} and S_{3} are subspaces of \mathbb{R}^{3} while S_{1} and S_{4} are not.

Problem 2 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) .
$$

Find the matrix of the operator L relative to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let M_{L} denote the desired matrix. By definition, M_{L} is a 4 -by-4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ relative to the basis $E_{1}, E_{2}, E_{3}, E_{4}$. We have that

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+3 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+3 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+4 E_{3}+0 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+4 E_{4} .
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right)
$$

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis for the image of f.

The image of the linear operator f is the subspace of \mathbb{R}^{3} spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-2,-1), \mathbf{v}_{2}=(-1,1,0)$, and $\mathbf{v}_{3}=(-2,3,1)$. The third column is a linear combination of the first two, $\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1}$. Therefore the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} is the same as the span of \mathbf{v}_{1} and \mathbf{v}_{2}. The vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.

Alternative solution: The image of f is spanned by columns of the matrix A, that is, by vectors $\mathbf{v}_{1}=(1,-2,-1), \mathbf{v}_{2}=(-1,1,0)$, and $\mathbf{v}_{3}=(-2,3,1)$. To check linear independence of these vectors, we evaluate the determinant of A (using expansion by the third row):

$$
\operatorname{det} A=\left|\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right|=-1\left|\begin{array}{rr}
-1 & -2 \\
1 & 3
\end{array}\right|+1\left|\begin{array}{rr}
1 & -1 \\
-2 & 1
\end{array}\right|=(-1) \cdot(-1)+1 \cdot(-1)=0
$$

Since $\operatorname{det} A=0$, the columns of the matrix A are linearly dependent. Then the image of f is at most two-dimensional. On the other hand, the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent because they are not parallel. Hence they span a two-dimensional subspace of \mathbb{R}^{3}. It follows that this subspace coincides with the image of f. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for the image of f.
(ii) Find a basis for the null-space of f.

The null-space of f is the set of solutions of the vector equation $A \mathbf{x}=\mathbf{0}$. To solve the equation, we shall convert the matrix A to reduced echelon form. Since the right-hand side of the equation is the zero vector, elementary row operations do not change the solution set.

First we add the first row of the matrix A twice to the second row and once to the third one:

$$
\left(\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
-1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) .
$$

Then we subtract the second row from the third row:

$$
\left(\begin{array}{lll}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right) .
$$

Finally, we multiply the second row by -1 and add it to the first row:

$$
\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

It follows that the vector equation $A \mathbf{x}=\mathbf{0}$ is equivalent to the system $x-z=y+z=0$, where $\mathbf{x}=(x, y, z)$. The general solution of the system is $x=t, y=-t, z=t$ for an arbitrary $t \in \mathbb{R}$. That is, $\mathbf{x}=(t,-t, t)=t(1,-1,1)$, where $t \in \mathbb{R}$. Thus the null-space of the linear operator f is the line $t(1,-1,1)$. The vector $(1,-1,1)$ is a basis for this line.

Backdoor solution: It is easy to observe that the second column of the matrix A is the sum of the first and the third columns. This implies that the vector $\mathbf{w}=(1,-1,1)$ is in the null-space of f, that is, $A \mathbf{w}=\mathbf{0}$. Since the image of f has already been shown to be two-dimensional, the null-space of f has to be one-dimensional. It follows that the null-space of f is the line spanned by w. Consequently, the vector \mathbf{w} is a basis for the null-space.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation $\operatorname{det}(B-\lambda I)=0$. We obtain that

$$
\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
1 & 4-\lambda
\end{array}\right|=(2-\lambda)(4-\lambda)-3 \cdot 1=\lambda^{2}-6 \lambda+5=(\lambda-1)(\lambda-5) .
$$

Hence the matrix B has two eigenvalues: 1 and 5 .
(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector $\mathbf{x}=(x, y)$ of B associated with an eigenvalue λ is a nonzero solution of the vector equation $(B-\lambda I) \mathbf{x}=\mathbf{0}$.

First consider the case $\lambda=1$. We obtain that

$$
(B-I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow\left(\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x+3 y=0
$$

The general solution is $x=-3 t, y=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(-3,1)$ is an eigenvector of B associated with the eigenvalue 1 .

Now consider the case $\lambda=5$. We obtain that

$$
(B-5 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}
-3 & 3 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x-y=0
$$

The general solution is $x=t, y=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(1,1)$ is an eigenvector of B associated with the eigenvalue 5 .
(iii) Is there a basis for \mathbb{R}^{2} consisting of eigenvectors of B ?

The vectors $\mathbf{v}_{1}=(-3,1)$ and $\mathbf{v}_{2}=(1,1)$ are eigenvectors of the matrix B. The two eigenvectors are linearly independent because they are associated with different eigenvalues of B (or simply because they are not parallel). Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for \mathbb{R}^{2}.

Alternatively, the existence of a basis for \mathbb{R}^{2} consisting of eigenvectors of B already follows from the fact that the matrix B has two distinct eigenvalues.
(iv) Find all eigenvalues of the matrix B^{2}.

By the above the matrix B has eigenvalues 1 and 5 . This means that $B \mathbf{v}_{1}=\mathbf{v}_{1}$ and $B \mathbf{v}_{2}=5 \mathbf{v}_{2}$ for some nonzero vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$. Then

$$
B^{2} \mathbf{v}_{1}=B\left(B \mathbf{v}_{1}\right)=B \mathbf{v}_{1}=\mathbf{v}_{1}, \quad B^{2} \mathbf{v}_{2}=B\left(B \mathbf{v}_{2}\right)=B\left(5 \mathbf{v}_{2}\right)=5 B \mathbf{v}_{2}=5\left(5 \mathbf{v}_{2}\right)=25 \mathbf{v}_{2}
$$

Thus \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of the matrix B^{2} associated with the eigenvalues 1 and 25 , respectively. Since a 2 -by- 2 matrix has at most 2 eigenvalues, 1 and 25 are the only eigenvalues of B^{2}.

Bonus Problem 5 (25 pts.) Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=2 x+3 y \\
\frac{d y}{d t}=x+4 y
\end{array}\right.
$$

Introducing a vector function $\mathbf{v}(t)=(x(t), y(t))$, we can rewrite the system in the following way:

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v}, \quad \text { where } \quad B=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)
$$

As shown in the solution of Problem 4, there is a basis for \mathbb{R}^{2} consisting of eigenvectors of the matrix B. Namely, $\mathbf{v}_{1}=(-3,1)$ and $\mathbf{v}_{2}=(1,1)$ are eigenvectors of B associated with the eigenvalues 1 and 5 , respectively. Also, $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis for \mathbb{R}^{2}. It follows that

$$
\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}
$$

where r_{1} and r_{2} are well-defined scalar functions (coordinates of \mathbf{v} relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$). Then

$$
\frac{d \mathbf{v}}{d t}=\frac{d r_{1}}{d t} \mathbf{v}_{1}+\frac{d r_{2}}{d t} \mathbf{v}_{2}, \quad B \mathbf{v}=r_{1} B \mathbf{v}_{1}+r_{2} B \mathbf{v}_{2}=r_{1} \mathbf{v}_{1}+5 r_{2} \mathbf{v}_{2} .
$$

As a consequence,

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v} \quad \Longleftrightarrow\left\{\begin{array}{l}
\frac{d r_{1}}{d t}=r_{1} \\
\frac{d r_{2}}{d t}=5 r_{2}
\end{array}\right.
$$

The general solution of the differential equation $r_{1}^{\prime}=r_{1}$ is $r_{1}(t)=c_{1} e^{t}$, where c_{1} is an arbitrary constant. The general solution of the equation $r_{2}^{\prime}=5 r_{2}$ is $r_{2}(t)=c_{2} e^{5 t}$, where c_{2} is another arbitrary constant. Therefore the general solution of the equation $\mathbf{v}^{\prime}=B \mathbf{v}$ is

$$
\mathbf{v}(t)=c_{1} e^{t} \mathbf{v}_{1}+c_{2} e^{5 t} \mathbf{v}_{2}=c_{1} e^{t}\binom{-3}{1}+c_{2} e^{5 t}\binom{1}{1}=\binom{-3 c_{1} e^{t}+c_{2} e^{5 t}}{c_{1} e^{t}+c_{2} e^{5 t}},
$$

where $c_{1}, c_{2} \in \mathbb{R}$. Equivalently,

$$
\left\{\begin{array}{l}
x(t)=-3 c_{1} e^{t}+c_{2} e^{5 t} \\
y(t)=c_{1} e^{t}+c_{2} e^{5 t}
\end{array}\right.
$$

