
MATH 311–504/505 Fall 2018

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 Find the point of intersection of the planes x+ 2y − z = 1, x− 3y = −5, and
2x+ y + z = 0 in R

3.

The intersection point (x, y, z) is a solution of the system







x+ 2y − z = 1,
x− 3y = −5,
2x+ y + z = 0.

To solve the system, we convert its augmented matrix into reduced row echelon form using elementary
row operations:





1 2 −1 1
1 −3 0 −5
2 1 1 0



 →





1 2 −1 1
0 −5 1 −6
2 1 1 0



 →





1 2 −1 1
0 −5 1 −6
0 −3 3 −2



 →





1 2 −1 1
0 −3 3 −2
0 −5 1 −6





→







1 2 −1 1

0 1 −1 2

3

0 −5 1 −6






→







1 2 −1 1

0 1 −1 2

3

0 0 −4 −8

3






→







1 2 −1 1

0 1 −1 2

3

0 0 1 2

3







→







1 2 −1 1

0 1 0 4

3

0 0 1 2

3






→







1 2 0 5

3

0 1 0 4

3

0 0 1 2

3






→







1 0 0 −1

0 1 0 4

3

0 0 1 2

3






.

Thus the three planes intersect at the point (−1, 4
3
, 2
3
).

Alternative solution: The intersection point (x, y, z) is a solution of the system







x+ 2y − z = 1,
x− 3y = −5,
2x+ y + z = 0.

Adding all three equations, we obtain 4x = −4. Hence x = −1. Substituting x = −1 into the second
equation, we obtain y = 4

3
. Substituting x = −1 and y = 4

3
into the third equation, we obtain z = 2

3
.

It is easy to check that x = −1, y = 4

3
, z = 2

3
is indeed a solution of the system. Thus (−1, 4

3
, 2
3
) is

the unique intersection point.

Problem 2 Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

(i) Find the matrix of the operator L.
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Given v = (x, y, z) ∈ R
3, we have that v·v1 = x+y+z and L(v) = (x+y+z, 2(x+y+z), 2(x+y+z)).

Let A denote the matrix of the linear operator L. The columns of A are vectors L(e1), L(e2), L(e3),
where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is the standard basis for R3. Therefore

A =





1 1 1
2 2 2
2 2 2



 .

Alternative solution: Given a vector v = (x, y, z) ∈ R
3, let α = v · v1 and (x1, y1, z1) = L(v). In

terms of matrix algebra, we have





x1
y1
z1



 = α





1
2
2



 =





1
2
2



 (α) =





1
2
2





(

1 1 1
)





x
y
z





(note that scalar multiplication of a column vector is equivalent to multiplication by a 1 × 1 matrix
but the matrix has to be on the right as otherwise the matrix product is not defined). It follows that
the matrix of the operator L is





1
2
2





(

1 1 1
)

=





1 1 1
2 2 2
2 2 2



 .

(ii) Find the dimensions of the range and the kernel of L.

The range Range(L) of the linear operator L is the subspace of all vectors of the form L(v), where
v ∈ R

3. It is easy to see that Range(L) is the line spanned by the vector v2 = (1, 2, 2). Hence
dimRange(L) = 1.

The kernel ker(L) of the operator L is the subspace of all vectors x ∈ R
3 such that L(x) = 0.

Clearly, L(x) = 0 if and only if x · v1 = 0. Therefore ker(L) is the plane x+ y + z = 0 orthogonal to
v1 and passing through the origin. Its dimension is 2.

(iii) Find bases for the range and the kernel of L.

Since the range of L is the line spanned by the vector v2 = (1, 2, 2), this vector is a basis for the
range. The kernel of L is the plane given by the equation x + y + z = 0. The general solution of
the equation is x = −t− s, y = t, z = s, where t, s ∈ R. It gives rise to a parametric representation
t(−1, 1, 0) + s(−1, 0, 1) of the plane. Thus the kernel of L is spanned by the vectors (−1, 1, 0) and
(−1, 0, 1). Since the two vectors are linearly independent, they form a basis for ker(L).

Problem 3 Let v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 1). Let L : R3 → R
3 be a

linear operator on R
3 such that L(v1) = v2, L(v2) = v3, L(v3) = v1.

(i) Show that the vectors v1,v2,v3 form a basis for R3.

Let U be a 3× 3 matrix such that its columns are vectors v1,v2,v3:

U =





1 1 1
1 1 0
1 0 1



 .
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To find the determinant of U , we subtract the second row from the first one and then expand by the
first row:

detU =

∣

∣

∣

∣

∣

∣

0 0 1
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 0

∣

∣

∣

∣

= −1.

Since detU 6= 0, the vectors v1,v2,v3 are linearly independent. It follows that they form a basis for
R
3.

(ii) Find the matrix of the operator L relative to the basis v1,v2,v3.

Let A denote the matrix of L relative to the basis v1,v2,v3. By definition, the columns of A are
coordinates of vectors L(v1), L(v2), L(v3) with respect to the basis v1,v2,v3. Since L(v1) = v2 =
0v1 + 1v2 + 0v3, L(v2) = v3 = 0v1 + 0v2 + 1v3, L(v3) = v1 = 1v1 + 0v2 + 0v3, we obtain

A =





0 0 1
1 0 0
0 1 0



 .

(iii) Find the matrix of the operator L relative to the standard basis.

Let S denote the matrix of L relative to the standard basis for R3. We have S = UAU−1, where A
is the matrix of L relative to the basis v1,v2,v3 (already found) and U is the transition matrix from
v1,v2,v3 to the standard basis (the vectors v1,v2,v3 are consecutive columns of U):

A =





0 0 1
1 0 0
0 1 0



 , U =





1 1 1
1 1 0
1 0 1



 .

To find the inverse U−1, we merge the matrix U with the identity matrix I into one 3× 6 matrix and
apply row reduction to convert the left half U of this matrix into I. Simultaneously, the right half I
will be converted into U−1:

(U |I) =





1 1 1 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
1 0 1 0 0 1



 →





1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 0 −1 0 1





→





1 1 1 1 0 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 1 0 0 1 0
0 −1 0 −1 0 1
0 0 −1 −1 1 0



 →





1 0 0 −1 1 1
0 −1 0 −1 0 1
0 0 −1 −1 1 0





→





1 0 0 −1 1 1
0 1 0 1 0 −1
0 0 1 1 −1 0



 = (I|U−1).

Thus

S = UAU−1 =





1 1 1
1 1 0
1 0 1









0 0 1
1 0 0
0 1 0









−1 1 1
1 0 −1
1 −1 0





=





1 1 1
1 0 1
0 1 1









−1 1 1
1 0 −1
1 −1 0



 =





1 0 0
0 0 1
2 −1 −1



 .
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Alternative solution: Let S denote the matrix of L relative to the standard basis e1 = (1, 0, 0), e2 =
(0, 1, 0), e3 = (0, 0, 1). By definition, the columns of S are vectors L(e1), L(e2), L(e3). It is easy to
observe that e2 = v1 − v3, e3 = v1 − v2, and e1 = v2 − e2 = −v1 + v2 + v3. Therefore

L(e1) = L(−v1 + v2 + v3) = −L(v1) + L(v2) + L(v3) = −v2 + v3 + v1 = (1, 0, 2),

L(e2) = L(v1 − v3) = L(v1)− L(v3) = v2 − v1 = (0, 0,−1),

L(e3) = L(v1 − v2) = L(v1)− L(v2) = v2 − v3 = (0, 1,−1).

Thus

S =





1 0 0
0 0 1
2 −1 −1



 .

Problem 4 Let B =





1 1 1
1 1 1
1 1 1



.

(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation det(B − λI) = 0. We obtain that

det(B − λI) =

∣

∣

∣

∣

∣

∣

1− λ 1 1
1 1− λ 1
1 1 1− λ

∣

∣

∣

∣

∣

∣

= (1− λ)3 − 3(1 − λ) + 2

= (1− 3λ+ 3λ2 − λ3)− 3(1 − λ) + 2 = 3λ2 − λ3 = λ2(3− λ).

Hence the matrix B has two eigenvalues: 0 and 3.

(ii) Find a basis for R3 consisting of eigenvectors of B.

An eigenvector x = (x, y, z) of B associated with an eigenvalue λ is a nonzero solution of the vector
equation (B − λI)x = 0. First consider the case λ = 0. We obtain that

Bx = 0 ⇐⇒





1 1 1
1 1 1
1 1 1









x
y
z



 =





0
0
0



 ⇐⇒ x+ y + z = 0.

The general solution is x = −t − s, y = t, z = s, where t, s ∈ R. Equivalently, x = t(−1, 1, 0) +
s(−1, 0, 1). Hence the eigenspace of B associated with the eigenvalue 0 is two-dimensional. It is
spanned by eigenvectors v1 = (−1, 1, 0) and v2 = (−1, 0, 1).

Now consider the case λ = 3. We obtain that

(B − 3I)x = 0 ⇐⇒





−2 1 1
1 −2 1
1 1 −2









x
y
z



 =





0
0
0





⇐⇒





1 0 −1
0 1 −1
0 0 0









x
y
z



 =





0
0
0



 ⇐⇒
{

x− z = 0,
y − z = 0.
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The general solution is x = y = z = t, where t ∈ R. In particular, v3 = (1, 1, 1) is an eigenvector of B
associated with the eigenvalue 3.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B.
They are linearly independent since the matrix whose rows are these vectors is nonsingular:

∣

∣

∣

∣

∣

∣

−1 1 0
−1 0 1
1 1 1

∣

∣

∣

∣

∣

∣

= 3 6= 0.

It follows that v1,v2,v3 is a basis for R3.

(iii) Find an orthonormal basis for R3 consisting of eigenvectors of B.

It is easy to check that the vector v3 is orthogonal to v1 and v2. To transform the basis v1,v2,v3

into an orthogonal one, we only need to orthogonalize the pair v1,v2. Using the Gram-Schmidt
process, we replace the vector v2 by

u = v2 −
v2 · v1

v1 · v1

v1 = (−1, 0, 1) − 1

2
(−1, 1, 0) = (−1/2,−1/2, 1).

Now v1,u,v3 is an orthogonal basis for R3. Since u is a linear combination of the vectors v1 and v2,
it is also an eigenvector of B associated with the eigenvalue 0.

Finally, vectors w1 =
v1

‖v1‖
, w2 =

u

‖u‖ , and w3 =
v3

‖v3‖
form an orthonormal basis for R

3

consisting of eigenvectors of B. We get that ‖v1‖ =
√
2, ‖u‖ =

√

3/2, and ‖v3‖ =
√
3. Thus

w1 =
1√
2
(−1, 1, 0), w2 =

1√
6
(−1,−1, 2), w3 =

1√
3
(1, 1, 1).

Remark. We cannot apply the Gram-Schmidt process to eigenvectors from different eigenspaces
since a linear combination of them would not be an eigenvector. Hence for an orthogonal basis of
eigenvectors to exist, different eigenspaces must be orthogonal to one another. It turns out that an
orthonormal basis of eigenvectors exists if and only if the matrix is symmetric.

(iv) Find a diagonal matrix D and an invertible matrix U such that B = UDU−1.

The vectors v1 = (−1, 1, 0), v2 = (−1, 0, 1), and v3 = (1, 1, 1) are eigenvectors of the matrix B
associated with eigenvalues 0, 0, and 3, respectively. Since these vectors form a basis for R3, it follows
that B = UDU−1, where

D =





0 0 0
0 0 0
0 0 3



 , U =





−1 −1 1
1 0 1
0 1 1



 .

Here U is the transition matrix from the basis v1,v2,v3 to the standard basis (its columns are vectors
v1,v2,v3) while D is the matrix of the linear operator L : R3 → R

3, L(x) = Bx with respect to the
basis v1,v2,v3.

Problem 5 Let V be a subspace ofR4 spanned by vectors x1 = (1, 1, 0, 0), x2 = (2, 0,−1, 1),
and x3 = (0, 1, 1, 0).
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(i) Find the distance from the point y = (0, 0, 0, 4) to the subspace V .
(ii) Find the distance from the point y to the orthogonal complement V ⊥.

The vector y is uniquely represented as y = p+o, where p ∈ V and o is orthogonal to V , that is,
o ∈ V ⊥. The vector p is the orthogonal projection of y onto the subspace V . Since (V ⊥)⊥ = V , the
vector o is the orthogonal projection of y onto the subspace V ⊥. It follows that the distance from the
point y to V equals ‖o‖ while the distance from y to V ⊥ equals ‖p‖.

The orthogonal projection p of the vector y onto the subspace V is easily computed when we have
an orthogonal basis for V . To get such a basis, we apply the Gram-Schmidt orthogonalization process
to the basis x1,x2,x3:

v1 = x1 = (1, 1, 0, 0), v2 = x2 −
x2 · v1

v1 · v1

v1 = (2, 0,−1, 1) − 2

2
(1, 1, 0, 0) = (1,−1,−1, 1),

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2 = (0, 1, 1, 0) − 1

2
(1, 1, 0, 0) − −2

4
(1,−1,−1, 1) = (0, 0, 1/2, 1/2).

Now that v1,v2,v3 is an orthogonal basis for V we obtain

p =
y · v1

v1 · v1

v1 +
y · v2

v2 · v2

v2 +
y · v3

v3 · v3

v3 =

=
0

2
(1, 1, 0, 0) +

4

4
(1,−1,−1, 1) +

2

1/2
(0, 0, 1/2, 1/2) = (1,−1, 1, 3).

Consequently, o = y − p = (0, 0, 0, 4) − (1,−1, 1, 3) = (−1, 1,−1, 1). Thus the distance from y to the
subspace V equals ‖o‖ = 2 and the distance from y to V ⊥ equals ‖p‖ =

√
12 = 2

√
3.

Problem 6 Consider a vector field F(x, y, z) = xyze1 + xye2 + x2e3.

(i) Find curl(F).

curl(F) =

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

xyz xy x2

∣

∣

∣

∣

∣

∣

∣

=

(

∂(x2)

∂y
− ∂(xy)

∂z

)

e1 +

(

∂(xyz)

∂z
− ∂(x2)

∂x

)

e2

+

(

∂(xy)

∂x
− ∂(xyz)

∂y

)

e3 = (xy − 2x)e2 + (y − xz)e3.

(ii) Find the integral of the vector field curl(F) along a hemisphere H = {(x, y, z) ∈ R
3 :

x2+ y2+ z2 = 1, z ≥ 0}. Orient the hemisphere by the normal vector n = (0, 0, 1) at the point
(0, 0, 1).

According to Stokes’ Theorem,
∫∫

H
curl(F) · dS =

∮

∂H
F · ds,

where the boundary ∂H is oriented consistently with H. The boundary is a circle, ∂H = {(x, y, z) ∈
R
3 : x2 + y2 = 1, z = 0}. It is parametrized (with the right orientation) by a path x : [0, 2π] → R

3,
x(t) = (cos t, sin t, 0). We have F(x(t)) = (0, cos t sin t, cos2 t) and x′(t) = (− sin t, cos t, 0). Therefore

∮

∂H
F · ds =

∫

x

F · ds =
∫

2π

0

F(x(t)) · x′(t) dt =

∫

2π

0

cos2 t sin t dt = −1

3
cos3 t

∣

∣

∣

2π

t=0

= 0.
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Alternative solution: Let us evaluate the surface integral directly. To parametrize the hemisphere
H, we use a map X : [0, 2π] × [0, π/2] → R

3 given by X(λ, φ) = (cos λ cosφ, sinλ cosφ, sinφ). Here
the parameters λ and φ are the longitude and the latitude of a point on H. Then

∫∫

X

curlF · dS =

∫ π/2

0

∫

2π

0

curlF
(

X(λ, φ)
)

·
(∂X

∂λ
× ∂X

∂φ

)

dλ dφ.

We have
∂X

∂λ
= (− sinλ cosφ, cos λ cosφ, 0) and

∂X

∂φ
= (− cos λ sinφ, − sinλ sinφ, cosφ). By the

above, curlF(x, y, z) = (0, xy − 2x, y − xz), therefore

curlF
(

X(λ, φ)
)

= (0, cosλ sinλ cos2 φ− 2 cos λ cosφ, sinλ cosφ− cos λ cosφ sinφ).

Consequently,

curlF
(

X(λ, φ)
)

·
(∂X

∂λ
× ∂X

∂φ

)

=

=

∣

∣

∣

∣

∣

∣

0 cos λ sinλ cos2 φ− 2 cos λ cosφ sinλ cosφ− cos λ cosφ sinφ
− sinλ cosφ cos λ cosφ 0
− cos λ sinφ − sinλ sinφ cosφ

∣

∣

∣

∣

∣

∣

= (cos λ sinλ cos2 φ− 2 cos λ cos φ) sinλ cos2 φ

+ (sinλ cosφ− cos λ cosφ sinφ)(sin2 λ cosφ sinφ+ cos2 λ cosφ sinφ)

= (cos λ sinλ cos2 φ− 2 cos λ cosφ) sinλ cos2 φ+ (sinλ cosφ− cosλ cosφ sin φ) cosφ sinφ

= cos λ sin2λ cos4φ− 2 cos λ sinλ cos3φ+ sinλ cos2φ sinφ− cos λ cos2φ sin2φ.

Observe that

∫

2π

0

cos λ sin2λdλ =

∫

2π

0

2 cos λ sinλdλ =

∫

2π

0

sinλdλ =

∫

2π

0

cos λdλ = 0

(each of the integrals is easily evaluated via the Fundamental Theorem of Calculus). It follows that

∫

2π

0

curlF
(

X(λ, φ)
)

·
(∂X

∂λ
× ∂X

∂φ

)

dλ = 0

for any value of φ. Using Fubini’s Theorem, we conclude that

∫∫

X

curlF · dS = 0.

The latter integral equals the integral of the vector field curlF along the hemisphere H provided that
the parametrization X induces the right orientation on H. Otherwise (when the induced orientation
is wrong) we need to change the sign. Either way, the integral equals zero.

For completeness, let us check out the orientation induced by X. It is defined by the following
field of normals:

N =
∂X

∂λ
× ∂X

∂φ
=

∣

∣

∣

∣

∣

∣

e1 e2 e3
− sinλ cosφ cos λ cosφ 0
− cos λ sinφ − sinλ sinφ cosφ

∣

∣

∣

∣

∣

∣

= (cos λ cos2φ, sinλ cos2φ, cosφ sinφ).
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In the parameter domain, the reference point (0, 0, 1) ∈ H corresponds to any point (λ, φ) with
φ = π/2. Unfortunately, this is a singular point of the parametrization as the field N equals zero.

However the field of unit normals
N

‖N‖ has a limit as φ → π/2 and that limit is (0, 0, 1). We conclude

that the orientation induced by X is the right one.

Problem 7 Find the volume of a parallelepiped bounded by planes x + 2y − z = −1,
x+ 2y − z = 1, x− 3y = −5, x− 3y = 0, 2x+ y + z = 0, and 2x+ y + z = 2.

Let P denote the parallelepiped. The volume of P can be found as a triple integral:

Volume(P ) =

∫∫∫

P
1 dx dy dz.

To evaluate the integral, we are going to change variables. New variables are u = x+2y−z, v = x−3y,
and w = 2x + y + z. In these variables the parallelepiped P is given by −1 ≤ u ≤ 1, −5 ≤ v ≤ 0,
0 ≤ w ≤ 2. It follows that

Volume(P ) =

∫

2

0

∫

0

−5

∫

1

−1

∣

∣

∣

∣

det
∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

du dv dw.

Our change of coordinates is linear,





u
v
w



 =





1 2 −1
1 −3 0
2 1 1









x
y
z



 .

Let U denote the above matrix. The Jacobian matrix
∂(u, v, w)

∂(x, y, z)
equals U at every point of R

3.

Consequently, the Jacobian matrix
∂(x, y, z)

∂(u, v, w)
equals U−1 everywhere on R

3. We obtain

detU =

∣

∣

∣

∣

∣

∣

1 2 −1
1 −3 0
2 1 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3 3 0
1 −3 0
2 1 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

3 3
1 −3

∣

∣

∣

∣

= −12.

Hence det(U−1) = (detU)−1 = −1/12. Then

Volume(P ) =

∫

2

0

∫

0

−5

∫

1

−1

∣

∣det(U−1)
∣

∣ du dv dw =
1

12
· 2 · 5 · 2 =

5

3
.
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