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Lecture 13:
Linear independence.



Linear independence

Definition. Let V be a vector space. Vectors

v1, v2, . . . , vk ∈ V are called linearly dependent
if they satisfy a relation

r1v1 + r2v2 + · · ·+ rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are

called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find

some distinct linearly dependent vectors v1, . . . , vk
in S . Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0
=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2, . . . , xn.

a0 + a1x + a2x
2 + · · ·+ anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2, . . . , xn, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and
p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and

v3 = (4,−7, 3). Determine whether vectors
v1, v2, v3 are linearly independent.

We have to check if there exist r1, r2, r3 ∈ R not all

zero such that r1v1 + r2v2 + r3v3 = 0.
This vector equation is equivalent to a system







r1 + 3r2 + 4r3 = 0
2r1 + r2 − 7r3 = 0

0r1 + r2 + 3r3 = 0





1 3 4 0
2 1 −7 0

0 1 3 0





The vectors v1, v2, v3 are linearly dependent if and
only if the coefficient matrix A = (v1, v2, v3) is

singular. We obtain that detA = 0.



Theorem The following conditions are equivalent:
(i) vectors v1, . . . , vk are linearly dependent;

(ii) one of vectors v1, . . . , vk is a linear
combination of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · ·+ rkvk = 0,

where ri 6= 0 for some 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · ·+ si−1vi−1 + si+1vi+1 + · · ·+ skvk

for some scalars sj . Then

s1v1 + · · ·+ si−1vi−1 − vi + si+1vi+1 + · · ·+ skvk = 0.



Theorem Vectors v1, v2, . . . , vm ∈ R
n are linearly

dependent whenever m > n (i.e., the number of

coordinates is less than the number of vectors).

Proof: Let vj = (a1j , a2j , . . . , anj) for j = 1, 2, . . . ,m.
Then the vector equality t1v1 + t2v2 + · · ·+ tmvm = 0
is equivalent to the system














a11t1 + a12t2 + · · ·+ a1mtm = 0,
a21t1 + a22t2 + · · ·+ a2mtm = 0,

· · · · · · · · ·
an1t1 + an2t2 + · · ·+ anmtm = 0.

Note that vectors v1, v2, . . . , vm are columns of the coefficient
matrix (aij). The number of leading entries in the row echelon
form is at most n. If m > n then there are free variables,
therefore the zero solution is not unique.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Two vectors are linearly dependent if and only if

they are parallel. Hence v1 and v2 are linearly
independent.

Vectors v1, v2, v3 are linearly independent if and

only if the matrix A = (v1, v2, v3) is invertible.

detA =

∣

∣

∣

∣

∣

∣

1 1 1
−1 0 1
1 0 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−1 1

1 1

∣

∣

∣

∣

= 2 6= 0.

Therefore v1, v2, v3 are linearly independent.

Four vectors in R
3 are always linearly dependent.

Thus v1, v2, v3, v4 are linearly dependent.



Problem. Let A =
(

−1 1
−1 0

)

. Determine whether

matrices A, A2, and A3 are linearly independent.

We have A =

(

−1 1
−1 0

)

, A2 =

(

0 −1
1 −1

)

, A3 =

(

1 0
0 1

)

.

The task is to check if there exist r1, r2, r3 ∈ R not all zero
such that r1A+ r2A

2 + r3A
3 = O.

This matrix equation is equivalent to a system














−r1 + 0r2 + r3 = 0
r1 − r2 + 0r3 = 0
−r1 + r2 + 0r3 = 0
0r1 − r2 + r3 = 0









−1 0 1 0
1 −1 0 0

−1 1 0 0
0 −1 1 0









→









1 −1 0 0
0 1 −1 0
0 0 0 0
0 0 0 0









The row echelon form of the augmented matrix shows there is
a free variable. Hence the system has a nonzero solution so
that the matrices are linearly dependent (one relation is
A+ A2 + A3 = O).



Problem. Show that functions ex , e2x , and e3x

are linearly independent in C∞(R).

Suppose that aex + be2x + ce3x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

aex + be2x + ce3x = 0,

aex + 2be2x + 3ce3x = 0,

aex + 4be2x + 9ce3x = 0.

It follows that A(x)v = 0, where

A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.



A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b

c



.

detA(x) = ex

∣

∣

∣

∣

∣

∣

1 e2x e3x

1 2e2x 3e3x

1 4e2x 9e3x

∣

∣

∣

∣

∣

∣

= exe2x

∣

∣

∣

∣

∣

∣

1 1 e3x

1 2 3e3x

1 4 9e3x

∣

∣

∣

∣

∣

∣

= exe2xe3x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
0 3 8

∣

∣

∣

∣

∣

∣

= e6x
∣

∣

∣

∣

1 2
3 8

∣

∣

∣

∣

= 2e6x 6= 0.

Since the matrix A(x) is invertible, we obtain

A(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0



Wronskian

Let f1, f2, . . . , fn be smooth functions on an interval

[a, b]. The Wronskian W [f1, f2, . . . , fn] is a
function on [a, b] defined by

W [f1, f2, . . . , fn](x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)
...

...
. . .

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for some

x0 ∈ [a, b] then the functions f1, f2, . . . , fn are
linearly independent in C [a, b].


