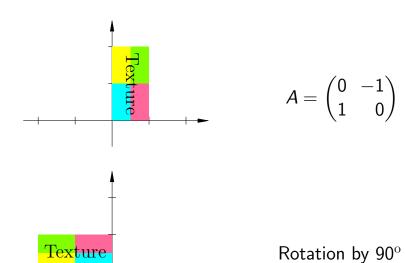
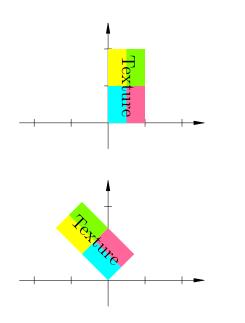
## MATH 311

Topics in Applied Mathematics I

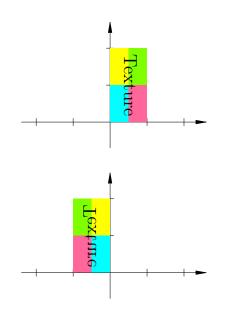
# Lecture 21b: Eigenvalues and eigenvectors.

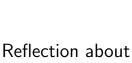

Characteristic equation.


#### Linear transformations of $\mathbb{R}^2$

Any linear mapping  $f: \mathbb{R}^2 \to \mathbb{R}^2$  is represented as multiplication of a 2-dimensional column vector by a  $2\times 2$  matrix:  $f(\mathbf{x}) = A\mathbf{x}$  or

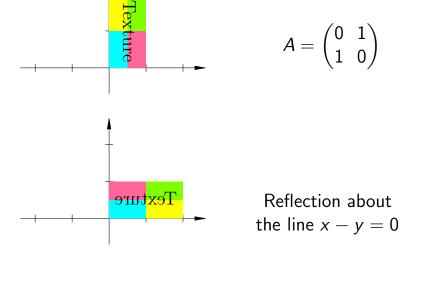
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

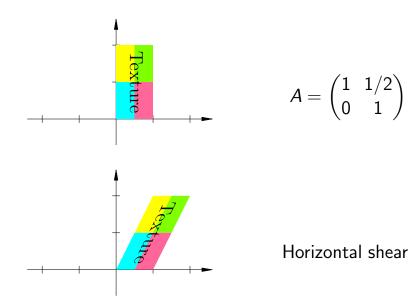

Linear transformations corresponding to particular matrices can have various geometric properties.

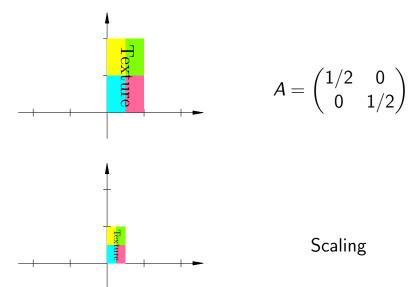


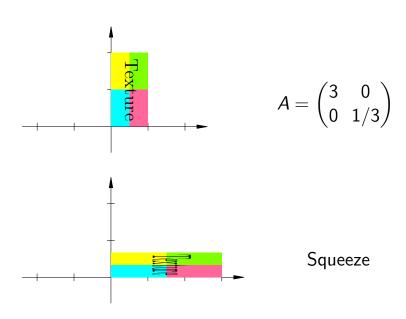


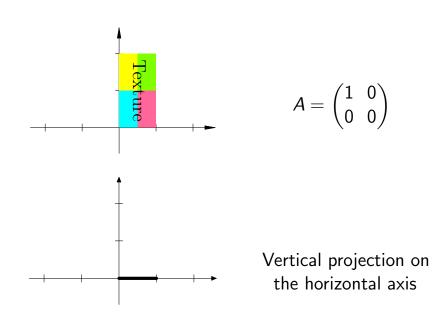

$$\sqrt{\frac{1}{\sqrt{2}}}$$
  $\frac{1}{\sqrt{2}}$ 

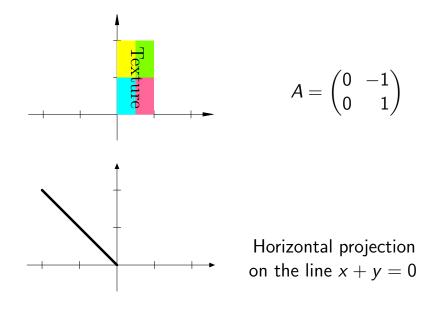

Rotation by 45°

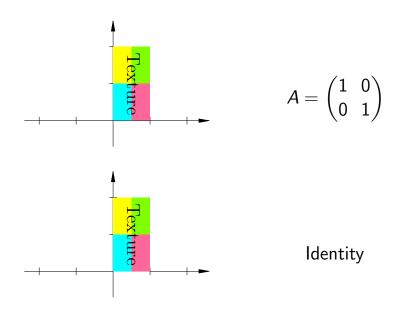




 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ 


the vertical axis














#### **Eigenvalues and eigenvectors**

Definition. Let A be an  $n \times n$  matrix. A number  $\lambda \in \mathbb{R}$  is called an **eigenvalue** of the matrix A if  $A\mathbf{v} = \lambda \mathbf{v}$  for a nonzero column vector  $\mathbf{v} \in \mathbb{R}^n$ .

The vector  $\mathbf{v}$  is called an **eigenvector** of A belonging to (or associated with) the eigenvalue  $\lambda$ .

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

Example.  $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ .

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

Hence (1,0) is an eigenvector of A belonging to the eigenvalue 2, while (0,-2) is an eigenvector of A belonging to the eigenvalue 3.

Example. 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Hence (1,1) is an eigenvector of A belonging to the eigenvalue 1, while (1,-1) is an eigenvector of A belonging to the eigenvalue -1.

Vectors  $\mathbf{v}_1=(1,1)$  and  $\mathbf{v}_2=(1,-1)$  form a basis for  $\mathbb{R}^2$ . Consider a linear operator  $L:\mathbb{R}^2\to\mathbb{R}^2$  given by  $L(\mathbf{x})=A\mathbf{x}$ . The matrix of L with respect to the basis  $\mathbf{v}_1,\mathbf{v}_2$  is  $B=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ .

Let A be an  $n \times n$  matrix. Consider a linear operator  $L : \mathbb{R}^n \to \mathbb{R}^n$  given by  $L(\mathbf{x}) = A\mathbf{x}$ .

Let  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  be a nonstandard basis for  $\mathbb{R}^n$  and B be the matrix of the operator L with respect to this basis.

**Theorem** The matrix B is diagonal if and only if vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  are eigenvectors of A.

If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i \iff B = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots & \\ O & & & \lambda_n \end{pmatrix}$$

### **Eigenspaces**

Let A be an  $n \times n$  matrix. Let  $\mathbf{v}$  be an eigenvector of A belonging to an eigenvalue  $\lambda$ .

Then 
$$A\mathbf{v} = \lambda \mathbf{v} \implies A\mathbf{v} = (\lambda I)\mathbf{v} \implies (A - \lambda I)\mathbf{v} = \mathbf{0}$$
.  
Hence  $\mathbf{v} \in N(A - \lambda I)$ , the nullspace of the matrix  $A - \lambda I$ .

Conversely, if  $\mathbf{x} \in N(A - \lambda I)$  then  $A\mathbf{x} = \lambda \mathbf{x}$ . Thus the eigenvectors of A belonging to the eigenvalue  $\lambda$  are nonzero vectors from  $N(A - \lambda I)$ .

Definition. If  $N(A - \lambda I) \neq \{0\}$  then it is called the **eigenspace** of the matrix A corresponding to the eigenvalue  $\lambda$ .

#### How to find eigenvalues and eigenvectors?

**Theorem** Given a square matrix A and a scalar  $\lambda$ , the following statements are equivalent:

- $\lambda$  is an eigenvalue of A,
- $N(A \lambda I) \neq \{\mathbf{0}\},\$
- the matrix  $A \lambda I$  is singular,
- $\det(A \lambda I) = 0$ .

Definition.  $det(A - \lambda I) = 0$  is called the **characteristic equation** of the matrix A.

Eigenvalues  $\lambda$  of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation  $(A - \lambda I)\mathbf{x} = \mathbf{0}$ .

Example.  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ .

$$\det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$$

 $=(a-\lambda)(d-\lambda)-bc$ 

 $=\lambda^2-(a+d)\lambda+(ad-bc)$ .

Example. 
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$$

$$= -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3,$$

where  $c_1 = a_{11} + a_{22} + a_{33}$  (the *trace* of A),  $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{32} \end{vmatrix},$ 

 $c_3 = \det A$ .

**Theorem.** Let  $A = (a_{ij})$  be an  $n \times n$  matrix.

Then  $det(A - \lambda I)$  is a polynomial of  $\lambda$  of degree n:

 $\det(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n.$ 

Furthermore,  $(-1)^{n-1}c_1 = a_{11} + a_{22} + \cdots + a_{nn}$  and  $c_n = \det A$ .

*Definition.* The polynomial  $p(\lambda) = \det(A - \lambda I)$  is called the **characteristic polynomial** of the matrix A.

**Corollary** Any  $n \times n$  matrix has at most n eigenvalues.