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Lecture 22:

Eigenvalues and eigenvectors

of a linear operator.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an n×n matrix. A number
λ ∈ R is called an eigenvalue of the matrix A if
Av = λv for a nonzero column vector v ∈ R

n.

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace

N(A− λI ), which is nontrivial, is called the
eigenspace of A corresponding to λ. The

eigenspace consists of all eigenvectors belonging to
the eigenvalue λ plus the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A− λI ) = 0 is called the characteristic

equation of A.

Eigenvalues λ of A are roots of the characteristic
equation.

If A is an n×n matrix then p(λ) = det(A− λI ) is a

polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any n×n matrix has at most n

eigenvalues.



Example. A =

(

2 1
1 2

)

.

Characteristic equation:

∣

∣

∣

∣

2− λ 1

1 2− λ

∣

∣

∣

∣

= 0.

(2− λ)2 − 1 = 0 =⇒ λ1 = 1, λ2 = 3.

(A− I )x = 0 ⇐⇒
(

1 1
1 1

)(

x

y

)

=

(

0
0

)

⇐⇒
(

1 1

0 0

)(

x

y

)

=

(

0

0

)

⇐⇒ x + y = 0.

The general solution is (−t, t) = t(−1, 1), t ∈ R.

Thus v1 = (−1, 1) is an eigenvector associated
with the eigenvalue 1. The corresponding
eigenspace is the line spanned by v1.



(A− 3I )x = 0 ⇐⇒
(

−1 1

1 −1

)(

x

y

)

=

(

0

0

)

⇐⇒
(

1 −1

0 0

)(

x

y

)

=

(

0

0

)

⇐⇒ x − y = 0.

The general solution is (t, t) = t(1, 1), t ∈ R.

Thus v2 = (1, 1) is an eigenvector associated with
the eigenvalue 3. The corresponding eigenspace is

the line spanned by v2.



Summary. A =

(

2 1

1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.

• The eigenspace of A associated with the
eigenvalue 1 is the line t(−1, 1).

• The eigenspace of A associated with the
eigenvalue 3 is the line t(1, 1).

• Eigenvectors v1 = (−1, 1) and v2 = (1, 1) of

the matrix A form a basis for R2.

• Geometrically, the mapping x 7→ Ax is a stretch

by a factor of 3 away from the line x + y = 0 in
the orthogonal direction.



Example. A =





1 1 −1

1 1 1
0 0 2



.

Characteristic equation:
∣

∣

∣

∣

∣

∣

1− λ 1 −1

1 1− λ 1
0 0 2− λ

∣

∣

∣

∣

∣

∣

= 0.

Expand the determinant by the 3rd row:

(2− λ)

∣

∣

∣

∣

1− λ 1

1 1− λ

∣

∣

∣

∣

= 0.

(

(1− λ)2 − 1
)

(2− λ) = 0 ⇐⇒ −λ(2− λ)2 = 0

=⇒ λ1 = 0, λ2 = 2.



Ax = 0 ⇐⇒





1 1 −1
1 1 1
0 0 2









x

y

z



 =





0
0
0





Convert the matrix to reduced row echelon form:




1 1 −1

1 1 1
0 0 2



 →





1 1 −1

0 0 2
0 0 2



 →





1 1 0

0 0 1
0 0 0





Ax = 0 ⇐⇒
{

x + y = 0,
z = 0.

The general solution is (−t, t, 0) = t(−1, 1, 0),
t ∈ R. Thus v1 = (−1, 1, 0) is an eigenvector
associated with the eigenvalue 0. The

corresponding eigenspace is the line spanned by v1.



(A− 2I )x = 0 ⇐⇒





−1 1 −1

1 −1 1
0 0 0









x

y

z



 =





0

0
0





⇐⇒





1 −1 1
0 0 0

0 0 0









x

y

z



 =





0
0

0



 ⇐⇒ x − y + z = 0.

The general solution is x = t − s, y = t, z = s,

where t, s ∈ R. Equivalently,

x = (t − s, t, s) = t(1, 1, 0) + s(−1, 0, 1).

Thus v2 = (1, 1, 0) and v3 = (−1, 0, 1) are
eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned

by v2 and v3.



Summary. A =





1 1 −1

1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenvalue 0 is simple: the corresponding
eigenspace is a line.

• The eigenvalue 2 is of multiplicity 2: the

corresponding eigenspace is a plane.

• Eigenvectors v1 = (−1, 1, 0), v2 = (1, 1, 0), and

v3 = (−1, 0, 1) of the matrix A form a basis for R3.

• Geometrically, the map x 7→ Ax is the projection
on the plane Span(v2, v3) along the lines parallel to

v1 with the subsequent scaling by a factor of 2.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and L : V → V

be a linear operator. A number λ is called an

eigenvalue of the operator L if L(v) = λv for a
nonzero vector v ∈ V . The vector v is called an
eigenvector of L associated with the eigenvalue λ.

(If V is a functional space then eigenvectors are also
called eigenfunctions.)

If V = R
n then the linear operator L is given by

L(x) = Ax, where A is an n×n matrix.
In this case, eigenvalues and eigenvectors of the

operator L are precisely eigenvalues and
eigenvectors of the matrix A.



Suppose L : V → V is a linear operator on a
finite-dimensional vector space V .

Let u1, u2, . . . , un be a basis for V and g : V → R
n be the

corresponding coordinate mapping. Let A be the matrix of L
with respect to this basis. Then

L(v) = λv ⇐⇒ Ag(v) = λ g(v).

Hence the eigenvalues of L coincide with those of the matrix
A. Moreover, the associated eigenvectors of A are coordinates
of the eigenvectors of L.

Definition. The characteristic polynomial

p(λ) = det(A− λI ) of the matrix A is called the
characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not

depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis v1, v2, . . . , vn. Then A = UBU−1,

where U is the transition matrix from the basis
v1, . . . , vn to u1, . . . , un. We have to show that
det(A− λI ) = det(B − λI ) for all λ ∈ R. We

obtain
det(A− λI ) = det(UBU−1 − λI )

= det
(

UBU−1 − U(λI )U−1
)

= det
(

U(B − λI )U−1
)

= det(U) det(B − λI ) det(U−1) = det(B − λI ).



Eigenspaces

Let L : V → V be a linear operator.

For any λ ∈ R, let Vλ denotes the set of all

solutions of the equation L(x) = λx.

Then Vλ is a subspace of V since Vλ is the kernel

of a linear operator given by x 7→ L(x)− λx.

Vλ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue λ.

In particular, λ ∈ R is an eigenvalue of L if and
only if Vλ 6= {0}.
If Vλ 6= {0} then it is called the eigenspace of L

corresponding to the eigenvalue λ.



Example. V = C∞(R), D : V → V , Df = f ′.

A function f ∈ C∞(R) is an eigenfunction of the

operator D belonging to an eigenvalue λ if
f ′(x) = λf (x) for all x ∈ R.

It follows that f (x) = ceλx , where c is a nonzero

constant.

Thus each λ ∈ R is an eigenvalue of D.
The corresponding eigenspace is spanned by eλx .



Example. V = C∞(R), L : V → V , Lf = f ′′.

Lf = λf ⇐⇒ f ′′(x)− λf (x) = 0 for all x ∈ R.

It follows that each λ ∈ R is an eigenvalue of L and

the corresponding eigenspace Vλ is two-dimensional.
Note that L=D2, hence Df = µf =⇒ Lf = µ2f .

If λ > 0 then Vλ = Span(eµx , e−µx), where

µ =
√
λ.

If λ < 0 then Vλ = Span
(

sin(µx), cos(µx)
)

, where

µ =
√
−λ.

If λ = 0 then Vλ = Span(1, x).


