# MATH 311 <br> Topics in Applied Mathematics I 

## Lecture 22: <br> Eigenvalues and eigenvectors of a linear operator.

## Eigenvalues and eigenvectors of a matrix

Definition. Let $A$ be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix $A$ if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector $\mathbf{v}$ is called an eigenvector of $A$ belonging to (or associated with) the eigenvalue $\lambda$.

If $\lambda$ is an eigenvalue of $A$ then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the eigenspace of $A$ corresponding to $\lambda$. The eigenspace consists of all eigenvectors belonging to the eigenvalue $\lambda$ plus the zero vector.

## Characteristic equation

Definition. Given a square matrix $A$, the equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of $A$.
Eigenvalues $\lambda$ of $A$ are roots of the characteristic equation.

If $A$ is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial of degree $n$. It is called the characteristic polynomial of $A$.

Theorem Any $n \times n$ matrix has at most $n$ eigenvalues.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
Characteristic equation: $\quad\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$.
$(2-\lambda)^{2}-1=0 \quad \Longrightarrow \quad \lambda_{1}=1, \quad \lambda_{2}=3$.

$$
\begin{aligned}
& (A-I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x+y=0
\end{aligned}
$$

The general solution is $(-t, t)=t(-1,1), t \in \mathbb{R}$.
Thus $\mathbf{v}_{1}=(-1,1)$ is an eigenvector associated with the eigenvalue 1 . The corresponding eigenspace is the line spanned by $\mathbf{v}_{1}$.

$$
\begin{aligned}
& (A-3 /) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x-y=0
\end{aligned}
$$

The general solution is $(t, t)=t(1,1), \quad t \in \mathbb{R}$.
Thus $\mathbf{v}_{2}=(1,1)$ is an eigenvector associated with the eigenvalue 3. The corresponding eigenspace is the line spanned by $\mathbf{v}_{2}$.

Summary. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix $A$ has two eigenvalues: 1 and 3 .
- The eigenspace of $A$ associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of $A$ associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix $A$ form a basis for $\mathbb{R}^{2}$.
- Geometrically, the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a stretch by a factor of 3 away from the line $x+y=0$ in the orthogonal direction.

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Characteristic equation:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0
$$

Expand the determinant by the 3rd row:

$$
(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=0
$$

$\left((1-\lambda)^{2}-1\right)(2-\lambda)=0 \Longleftrightarrow-\lambda(2-\lambda)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \quad \lambda_{2}=2$.

$$
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Convert the matrix to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A \mathbf{x}=\mathbf{0}
\end{gathered} \Longleftrightarrow\left\{\begin{array}{l}
x+y=0, \\
z=0 .
\end{array}\right.
$$

The general solution is $(-t, t, 0)=t(-1,1,0)$, $t \in \mathbb{R}$. Thus $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector associated with the eigenvalue 0 . The corresponding eigenspace is the line spanned by $\mathbf{v}_{1}$.
$(A-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Longleftrightarrow\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow x-y+z=0$.
The general solution is $x=t-s, \quad y=t, \quad z=s$, where $t, s \in \mathbb{R}$. Equivalently,

$$
\mathbf{x}=(t-s, t, s)=t(1,1,0)+s(-1,0,1)
$$

Thus $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$ are eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned by $\mathbf{v}_{2}$ and $\mathbf{v}_{3}$.

Summary. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix $A$ has two eigenvalues: 0 and 2 .
- The eigenvalue 0 is simple: the corresponding eigenspace is a line.
- The eigenvalue 2 is of multiplicity 2 : the corresponding eigenspace is a plane.
- Eigenvectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(-1,0,1)$ of the matrix $A$ form a basis for $\mathbb{R}^{3}$.
- Geometrically, the map $\mathbf{x} \mapsto A \mathbf{x}$ is the projection on the plane $\operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)$ along the lines parallel to $\mathbf{v}_{1}$ with the subsequent scaling by a factor of 2 .


## Eigenvalues and eigenvectors of an operator

Definition. Let $V$ be a vector space and $L: V \rightarrow V$ be a linear operator. A number $\lambda$ is called an eigenvalue of the operator $L$ if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector $\mathbf{v}$ is called an eigenvector of $L$ associated with the eigenvalue $\lambda$.
(If $V$ is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator $L$ is given by $L(\mathbf{x})=A \mathbf{x}$, where $A$ is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator $L$ are precisely eigenvalues and eigenvectors of the matrix $A$.

Suppose $L: V \rightarrow V$ is a linear operator on a finite-dimensional vector space $V$.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for $V$ and $g: V \rightarrow \mathbb{R}^{n}$ be the corresponding coordinate mapping. Let $A$ be the matrix of $L$ with respect to this basis. Then

$$
L(\mathbf{v})=\lambda \mathbf{v} \Longleftrightarrow A g(\mathbf{v})=\lambda g(\mathbf{v})
$$

Hence the eigenvalues of $L$ coincide with those of the matrix $A$. Moreover, the associated eigenvectors of $A$ are coordinates of the eigenvectors of $L$.

Definition. The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ of the matrix $A$ is called the characteristic polynomial of the operator $L$.
Then eigenvalues of $L$ are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator $L$ is well defined. That is, it does not depend on the choice of a basis.

Proof: Let $B$ be the matrix of $L$ with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where $U$ is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We have to show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right)
$$

$$
=\operatorname{det}\left(U B U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right)
$$

$$
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

## Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let $V_{\lambda}$ denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then $V_{\lambda}$ is a subspace of $V$ since $V_{\lambda}$ is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
$V_{\lambda}$ minus the zero vector is the set of all eigenvectors of $L$ associated with the eigenvalue $\lambda$. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of $L$ if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{0\}$ then it is called the eigenspace of $L$ corresponding to the eigenvalue $\lambda$.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad D: V \rightarrow V, \quad D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator $D$ belonging to an eigenvalue $\lambda$ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where $c$ is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of $D$.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad L: V \rightarrow V, \quad L f=f^{\prime \prime}$. $L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of $L$ and the corresponding eigenspace $V_{\lambda}$ is two-dimensional. Note that $L=D^{2}$, hence $D f=\mu f \Longrightarrow L f=\mu^{2} f$. If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}\left(e^{\mu x}, e^{-\mu x}\right)$, where $\mu=\sqrt{\lambda}$.

If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\mu x), \cos (\mu x))$, where $\mu=\sqrt{-\lambda}$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

