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Basis of eigenvectors.
Diagonalization.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and

L:V — V be a linear operator. A number X is
called an eigenvalue of the operator L if

L(v) = Av| for a nonzero vector v € V. The
vector v is called an eigenvector of L associated
with the eigenvalue \.

The set V), of all eigenvectors of L associated with
the eigenvalue A along with the zero vector is a
subspace of V. It is called the eigenspace of L
corresponding to the eigenvalue .



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L:V — V be a linear operator. Let vq,vy, ..., v,
be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors vi, Vo, ...,V, are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

A1 0]

L(V,‘) = )\,’V,‘ — A= A2

0] An



How to find a basis of eigenvectors

Theorem If vy, v,, ..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, Ao, ..., A,
then vy, vy, ... v, are linearly independent.

Corollary 1 Suppose Ai, Ao, ..., A are all eigenvalues of a

linear operator L:V — V. Forany 1</ <k, letS; bea
basis for the eigenspace associated to the eigenvalue ;. Then
these bases are disjoint and the union S =5 US U---U S,
is a linearly independent set.

Moreover, if the vector space V' admits a basis consisting of
eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an nxn matrix such that the
characteristic equation det(A — A/) = 0 has n distinct roots.
Then (i) there is a basis for R" consisting of eigenvectors of A;
(i) all eigenspaces of A are one-dimensional.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V' formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU7!, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R?.

Thus the matrix A is diagonalizable. Namely,
A = UBU™!, where

(9 (1)

Notice that U is the transition matrix from the basis vi, v, to
the standard basis.



11 -1
Example. A=11 1 1

00 2
e The matrix A has two eigenvalues: 0 and 2.
e The eigenspace for 0 is one-dimensional; it has a basis
Sy = {v1}, where v; =(—1,1,0).
e The eigenspace for 2 is two-dimensional; it has a basis
Sy = {va,v3}, where v, =(1,1,0), v3 = (—1,0,1).

e The union S; U S, = {vy1,vy,v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A= UBU™!,
where

000 -1 1 -1
B=1020 U= 11 0
0 0 2 00 1



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by
the following examples.

11
Example 1. A= <O 1).
det(A— M) = (A —1)%2. Hence A\ =1 is the only
eigenvalue. The associated eigenspace is the line
t(1,0).
0 -1
Example 2. A= <1 0).
det(A— M) = N2+ 1.
—> no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



To diagonalize an nxn matrix A is to find a diagonal matrix B
and an invertible matrix U such that A= UBU™.

Suppose there exists a basis vy,...,v, for R” consisting of
eigenvectors of A. That is, Avy, = Axvi, where A\, € R.

Then A= UBU™!, where B = diag()\1,\2,...,A,) and U is
a transition matrix whose columns are vectors vi,Vvs,...,V,.

4 3

Example. A= (0 1

). det(A— M) = (4— \)(1—\).

Eigenvalues: A\ =4, \, = 1.

. . 1 -1
Associated eigenvectors: v; = (0> Vo = ( 1).

Thus A= UBU™1, where

(1) 06 )



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal
matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,
it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square
matrix A, to find its power Ak
51 0] S]l_( @)
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4 3

Problem. Let A= (O 1

). Find A°.

We know that A = UBU™!, where

-(59) v-()

Then A® = UBU-'UBU-'UBU'UBU-'UBU™?

1 -1\ /1024 0\ (1 1
_ |JB5()-1 —
—uero=(5 ) (5% 1) (0 1)
(1024 -1\ (1 1\ (1024 1023
N 0 1/\0 1) 0 1 /)



4 3

Problem. Let A= <O 1

). Find A% (k > 1).

We know that A = UBU™!, where

4 0 1 —1
B_<O 1>' U_<O 1)'
Then

1 -1\ /4 0\ /11
k _ kp1—1 _
w=vso= (o) (5 9) (01)
Ak -1\ (1 1\ (4K 4k
~\o 1J\o1) \o 1 )



Problem. Let A= <
such that C2 = A.

4 3 . .
0 1). Find a matrix C

We know that A = UBU~!, where

(8 o= Y)

Suppose that D? = B for some matrix D. Let C = UDU™!.
Then C? = UDU~'UDU! = UD?U~! = UBU™! = A.

(V4 0\ (20
WecantakeD—(0 vi) = \o 1)

e DEGY-GY



Initial value problem for a system of linear ODEs:

dx

= =4x + 3y,

& x(0) =1, y(0)=1.
dt =Y,

The system can be rewritten in vector form:

d
d—\t’:Av, where A:(g i’) v:(;).

Matrix A is diagonalizable: A = UBU~!, where

(19 0=

W- . .
Let w = (W1> be coordinates of the vector v relative to the
p)

basis v; = (1,0), v = (—1,1) of eigenvectors of A. Then
v=Uw = w=U"1v.



It follows that

dw d, _,dv 1 1
G v W
dw — Ay ,
Hence dw = Bw <— ddt '
dt % = Wh.

General solution: wy(t) = ce*t, wy(t) = cet, where ¢;, ¢ € R.

Initial condition:

e NN R)

Thus wi(t) = 2e*, wy(t) = e'. Then

() -o-¢ ) (407)



