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Lecture 31:
Differentiation in vector spaces.



The derivative

Definition. A real function f is said to be differentiable at a
point a ∈ R if it is defined on an open interval containing a

and the limit

lim
h→0

f (a + h)− f (a)

h

exists. The limit is denoted f ′(a) and called the derivative of
f at a. An equivalent condition is

f (a + h) = f (a) + f ′(a)h + r(h), where lim
h→0

r(h)/h = 0.

If a function f is differentiable at a point a, then it is
continuous at a.

Suppose that a function f is defined and differentiable on an
interval I . Then the derivative of f can be regarded as a
function on I .



Convergence in normed vector spaces

Suppose V is a vector space endowed with a norm ‖ · ‖. The
norm gives rise to a distance function dist(x, y) = ‖x− y‖.

Definition. We say that a sequence of vectors v1, v2, v3, . . .
converges to a vector u in the normed vector space V if
‖vk − u‖ → 0 as k → ∞.

In the case V = R
n, a sequence of vectors converges with

respect to a norm if and only if it converges in each coordinate.
In the case V = Mm,n(R), a sequence of matrices converges
with respect to a norm if and only if it converges in each entry.

Similarly, in the case dimV < ∞ we can choose a finite basis
w1,w2, . . . ,wn. Any vector v ∈ V can be expanded into a
linear combination v = x1w1 + x2w2 + · · ·+ xnwn. Then a
sequence of vectors converges with respect to a norm if and
only if each of the coordinates xi converges.



Vector-valued functions

Suppose V is a vector space endowed with a norm ‖ · ‖.

Definition. We say that a function v : X → V defined on a
set X ⊂ R converges to a limit u ∈ V at a point a ∈ R if
‖v(x)− u‖ → 0 as x → a.

Further, we say that the function v is continuous at a point
c ∈ X if v(c) = lim

x→c
v(x).

Finally, the function v is said to be differentiable at a point
a ∈ R if it is defined on an open interval containing a and the
limit

lim
h→0

1

h

(

f (a + h)− f (a)
)

exists. The limit is denoted v′(a) and called the derivative of
v at a.



Differentiability theorems

Sum Rule If functions v : X → V and w : X → V are
differentiable at a point a ∈ R, then the sum v +w is also
differentiable at a. Moreover, (v +w)′(a) = v′(a) +w′(a).

Homogeneous Rule If a function v : X → V is
differentiable at a point a ∈ R, then for any r ∈ R the scalar
multiple rv is also differentiable at a. Moreover,
(rv)′(a) = rv′(a).

Difference Rule If functions v : X → V and w : X → V

are differentiable at a point a ∈ R, then the difference v −w
is also differentiable at a. Moreover,
(v −w)′(a) = v′(a)− w′(a).



Differentiability theorems

Product Rule #1 If functions f : X → R and v : X → V

are differentiable at a point a ∈ R, then the scalar multiple
f v is also differentiable at a. Moreover,
(f v)′(a) = f ′(a)v(a) + f (a)v′(a).

Product Rule #2 Assume that the norm on V is induced by
an inner product 〈·, ·〉. If functions v : X → V and
w : X → V are differentiable at a point a ∈ R, then the
inner product 〈v,w〉 is also differentiable at a. Moreover,
(〈v,w〉)′(a) = 〈v′(a),w(a)〉+ 〈v(a),w′(a)〉.

Chain Rule If a function f : X → R is differentiable at a
point a ∈ R and a function v : Y → V is differentiable at
f (a), then the composition v ◦ f is differentiable at a.
Moreover, (v ◦ f )′(a) = f ′(a)v′(f (a)).



Partial derivative

Consider a function f : X → V that is defined in a domain
X ⊂ R

n and takes values in a normed vector space V . The
function f depends on n real variables: f = f (x1, x2, . . . , xn).
Let us select a point a = (a1, a2, . . . , an) ∈ X and a variable
xi . Now we go to the point a and fix all variables except xi .
That is, we introduce a function of one variableφ(x) = f (a1, . . . , ai−1, x , ai+1, . . . , an).
If the function φ is differentiable at ai , then the derivativeφ′(ai) is called the partial derivative of f at the point a with
respect to the variable xi .

Notation:
∂f∂xi (a), ∂∂xi f (a), (Dxi f )(a).



Directional derivative

Consider a function f : X → V that is defined on a subset
X ⊂ W of a vector space W and takes values in a normed
vector space V . For every point a ∈ X and vector v ∈ W

we introduce a function of real variable φ(t) = f (a+ tv).
If the function φ is differentiable at 0, then the derivative φ′(0)
is called the directional derivative of f at the point a along
the vector v. Notation: (Dvf )(a).

The partial derivative is a particular case of the directional
derivative, when W = R

n and v is from the standard basis.

Homogeneity (Drvf )(a) = r(Dvf )(a) for all r ∈ R

whenever (Dvf )(a) exists.

Linearity Suppose W is a normed vector space, (Dvf )(a)
exists for all v and depends continuously on a. Then
v 7→ (Dvf )(a) is a linear transformation.



Limit of a function and continuity

Let V and W be normed vector spaces. Suppose f : E → V

is a function defined on a set E ⊂ W .

Definition. We say that the function f converges to a limit
L ∈ V at a point w0 ∈ W if for every ε > 0 there existsδ = δ(ε) > 0 such that for all w ∈ E ,

0 < ‖w − w0‖ < δ implies ‖f (w)− L‖ < ε.
An equivalent condition is that for any sequence w1,w2, . . .
of vectors from E , lim

n→∞
wn = w0 implies lim

n→∞
f (wn) = L.

Definition. Given a set E ⊂ W , a function f : E → V , and
a point w0 ∈ E , the function f is continuous at w0 if

f (w0) = lim
w→w0

f (w).

We say that the function f is continuous on a set E0 ⊂ E if
f is continuous at every point of E0.



Continuity of a linear transformation

Theorem Suppose V and W are normed vector
spaces and L : W → V is a linear transformation.

Then the following conditions are equivalent:
(i) L is continuous everywhere on W ,

(ii) L is continuous at the zero vector,
(iii) ‖L(w)‖ ≤ C‖w‖ for some C > 0 and all

w ∈ W .

Example. • If dimW < ∞ then any linear
transformation L : W → V is continuous.
Otherwise it is not so.



Continuity of a linear transformation

Examples. • Multiplication by a fixed function
L : C [a, b] → C [a, b], L(f ) = gf , where

g ∈ C [a, b].
It is continuous with respect to the uniform norm
‖f ‖∞ = max

a≤x≤b
|f (x)| and with respect to any p-norm

‖f ‖p =

(
∫ b

a

|f (x)|p dx

)1/p

, p ≥ 1.

Indeed, ‖gf ‖∞ ≤ ‖g‖∞‖f ‖∞ and ‖gf ‖p ≤ ‖g‖∞‖f ‖p.

• Evaluation at a fixed pointℓ : C [a, b] → R, ℓ(f ) = f (c), where c ∈ [a, b].
It is continuous with respect to the uniform norm, but not
continuous with respect to the p-norms.



Continuity of a linear transformation

Examples. • Inner product with a fixed vectorℓ : V → R, ℓ(v) = 〈v, v0〉, where v0 ∈ V .

It is continuous with respect to the induced norm since
|ℓ(v)| ≤ C‖v‖, where C = ‖v0‖.

• Differentiation D : C∞[a, b] → C∞[a, b],
D(f ) = f ′.

Consider a function fλ(x) = eλx , a ≤ x ≤ b. We have
D(fλ) = λfλ, hence ‖D(fλ)‖ = |λ| ‖fλ‖ for any norm. Sinceλ can be arbitrarily large, the operator D is not continuous.



The (Frechét) differential

Suppose V and W are normed vector spaces and consider a
function F : X → V , where X ⊂ W .

Definition. We say that the function F is differentiable at a
point a ∈ X if it is defined in a neighborhood of a and there
exists a continuous linear transformation L : W → V such
that

F (a+ v) = F (a) + L(v) + R(v),

where ‖R(v)‖/‖v‖ → 0 as ‖v‖ → 0. The transformation L

is called the differential of F at a and denoted (DF )(a).

Theorem If a function F is differentiable at a point a, then
the directional derivatives (DvF )(a) exist for all v and
(DvF )(a) = (DF )(a)[v].

Fermat’s Theorem If a real-valued function F is
differentiable at a point a of local extremum, then the
differential (DF )(a) is identically zero.



Examples

• Any linear transformation L : R → R is a scaling
L(x) = rx by a scalar r . If L is the differential of a function
f : X → R at a point a ∈ R, then r = f ′(a).

• Any linear transformation L : Rn → R is the dot product
with a fixed vector, L(x) = x · v0. If L is the differential of a
function f : X → R at a point a ∈ R

n, then v0 = ∇f (a).

• Any linear transformation L : Rn → R
m is a matrix

transformation: L(x) = Bx, where B = (bij) is an m×n

matrix. If L is the differential of a function F : X → R
m at

a point a ∈ R
n, then bij =

∂Fi∂xj (a).
The matrix B of partial derivatives is called the Jacobian

matrix of F and denoted
∂(F1, . . . , Fm)∂(x1, . . . , xn) .


