MATH 311

Topics in Applied Mathematics I

Lecture 35:

Conservative vector fields.

Area of a surface.

Surface integrals.

Conservative vector fields

Let R be an open region in \mathbb{R}^n such that any two points in R can be connected by a continuous path. Such regions are called **(arcwise) connected**.

Definition. A continuous vector field $\mathbf{F}: R \to \mathbb{R}^n$ is called **conservative** if $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$

for any two simple, piecewise smooth, oriented curves $C_1, C_2 \subset R$ with the same initial and terminal points.

An equivalent condition is that $\oint_C \mathbf{F} \cdot d\mathbf{s} = 0$ for any piecewise smooth closed curve $C \subset R$.

Conservative vector fields

Theorem The vector field \mathbf{F} is conservative if and only if it is a gradient field, that is, $\mathbf{F} = \nabla f$ for some function $f: R \to \mathbb{R}$. If this is the case, then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = f(B) - f(A)$$

for any piecewise smooth, oriented curve $C \subset R$ that connects the point A to the point B.

Remark. In the case \mathbf{F} is a force field, conservativity means that energy is conserved. Moreover, in this case the function f is the potential energy.

Test of conservativity

Theorem If a smooth field $\mathbf{F} = (F_1, F_2, \dots, F_n)$ is conservative in a region $R \subset \mathbb{R}^n$, then the Jacobian matrix $\frac{\partial (F_1, F_2, \dots, F_n)}{\partial (x_1, x_2, \dots, x_n)}$ is symmetric everywhere in R, that is, $\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i}$ for $i \neq j$.

Indeed, if the field ${\bf F}$ is conservative, then ${\bf F}=\nabla f$ for some smooth function $f:R\to\mathbb{R}$. It follows that the Jacobian matrix of ${\bf F}$ is the **Hessian matrix** of f, that is, the matrix of second-order partial derivatives: $\frac{\partial F_i}{\partial x_j}=\frac{\partial^2 f}{\partial x_j\,\partial x_i}$.

Remark. The converse of the theorem holds provided that the region R is **simply-connected**, which means that any closed path in R can be continuously shrunk within R to a point.

Finding scalar potential

Example.
$$\mathbf{F}(x,y) = (2xy^3 + 3y\cos 3x, 3x^2y^2 + \sin 3x).$$

The vector field **F** is conservative if $\partial F_1/\partial y = \partial F_2/\partial x$.

$$\frac{\partial F_1}{\partial y} = 6xy^2 + 3\cos 3x, \quad \frac{\partial F_2}{\partial x} = 6xy^2 + 3\cos 3x.$$

Thus $\mathbf{F} = \nabla f$ for some function f (scalar potential of \mathbf{F}),

that is,
$$\frac{\partial f}{\partial x} = 2xy^3 + 3y\cos 3x$$
, $\frac{\partial f}{\partial y} = 3x^2y^2 + \sin 3x$.

Integrating the second equality by y, we get

$$f(x,y) = \int (3x^2y^2 + \sin 3x) \, dy = x^2y^3 + y \sin 3x + g(x).$$

Substituting this into the first equality, we obtain that $2xy^3 + 3y\cos 3x + g'(x) = 2xy^3 + 3y\cos 3x$. Hence g'(x) = 0 so that g(x) = c, a constant. Then $f(x,y) = x^2y^3 + y\sin 3x + c$.

Surface

Suppose D_1 and D_2 are domains in \mathbb{R}^3 and $\mathbf{T}:D_1\to D_2$ is an invertible map such that both \mathbf{T} and \mathbf{T}^{-1} are smooth. Then we say that \mathbf{T} defines **curvilinear coordinates** in D_1 .

Definition. A nonempty set $S \subset \mathbb{R}^3$ is called a **smooth** surface if for every point $\mathbf{p} \in S$ there exist curvilinear coordinates $\mathbf{T}: D_1 \to D_2$ in a neighborhood of \mathbf{p} such that $\mathbf{T}(\mathbf{p}) = \mathbf{0}$ and either $\mathbf{T}(S \cap D_1) = \{(x, y, z) \in D_2 \mid z = 0\}$ or $\mathbf{T}(S \cap D_1) = \{(x, y, z) \in D_2 \mid z = 0, y \geq 0\}$. In the first case, \mathbf{p} is called an **interior point** of the surface S, in the second case, \mathbf{p} is called a **boundary point** of S.

The set of all boundary points of the surface S is called the **boundary** of S and denoted ∂S .

A smooth surface S is called **complete** if for any convergent sequence of points from S, the limit belongs to S as well. A complete surface with no boundary points is called **closed**.

Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^2$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}:D\to\mathbb{R}^3$ is called a **parametrized surface**. The image $\mathbf{X}(D)$ is called the **underlying surface**.

The parametrized surface is **smooth** if **X** is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0,t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0,t_0)$ are linearly independent for all $(s_0,t_0)\in D$. If this is the case, then the plane in \mathbb{R}^3 through the point $\mathbf{X}(s_0,t_0)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0,t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0,t_0)$ is called the **tangent plane** to $\mathbf{X}(D)$ at $\mathbf{X}(s_0,t_0)$.

Example. Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function and consider a **level set** $P = \{(x, y, z) : f(x, y, z) = c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{X} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix}.$$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A=(a_{ij})$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π . The tangent plane at every point is Π itself.

For a measurable set $D \subset \mathbb{R}^2$, the image $\mathbf{X}(D)$ is measurable in the plane Π . Moreover, $\operatorname{area}(\mathbf{X}(D)) = \alpha \operatorname{area}(D)$ for some fixed scalar α . To determine α , consider the unit square $Q = [0,1] \times [0,1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha = \operatorname{area}(\mathbf{X}(Q)) = \|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\|$.

Area of a surface

Let P be a smooth surface parametrized by $\mathbf{X}:D\to\mathbb{R}^3$. Then the area of P is

$$\operatorname{area}(P) = \iint_{D} \left\| \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t} \right\| ds dt.$$

Suppose P is the graph of a smooth function $g:D\to\mathbb{R}$, i.e., P is given by z=g(x,y). We have a natural parametrization $\mathbf{X}:D\to\mathbb{R}^3$, $\mathbf{X}(x,y)=(x,y,g(x,y))$. Then $\frac{\partial\mathbf{X}}{\partial x}=(1,0,g_x')$ and $\frac{\partial\mathbf{X}}{\partial y}=(0,1,g_y')$. Consequently,

$$\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 1 & 0 & g_x' \\ 0 & 1 & g_y' \end{vmatrix} = (-g_x', -g_y', 1).$$

It follows that

area(P) =
$$\iint_{P} \sqrt{1 + |g'_x|^2 + |g'_y|^2} dx dy$$
.

Scalar surface integral

Scalar surface integral is an integral of a scalar function f over a parametrized surface $\mathbf{X}:D\to\mathbb{R}^3$ relative to the area element of the surface. It can be defined as a limit of Riemann sums

$$\mathcal{S}(f, R, \tau_j) = \sum_{j=1}^k f(\mathbf{x}(\tau_j)) \operatorname{area}(\mathbf{X}(D_j)),$$

where $R = \{D_1, D_2, \dots, D_k\}$ is a partition of D into small pieces and $\tau_j \in D_j$ for $1 \le j \le k$.

Theorem Let $\mathbf{X}: D \to \mathbb{R}^3$ be a smooth parametrized surface, where $D \subset \mathbb{R}^2$ is a bounded region. Then for any continuous function $f: \mathbf{X}(D) \to \mathbb{R}$,

$$\iint_{\mathbf{X}} f \, dS = \iint_{D} f(\mathbf{X}(s,t)) \, \left\| \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t} \right\| \, ds \, dt.$$

Vector surface integral

Vector surface integral is an integral of a vector field over a smooth parametrized surface. It is a scalar.

Definition. Let $\mathbf{X}:D\to\mathbb{R}^3$ be a smooth parametrized surface, where $D\subset\mathbb{R}^2$ is a bounded region. Then for any continuous vector field $\mathbf{F}:\mathbf{X}(D)\to\mathbb{R}^3$, the vector integral of \mathbf{F} along \mathbf{X} is

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \mathbf{N}(s,t) \, ds \, dt,$$

where $\mathbf{N} = \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}$, a normal vector to the surface.

Equivalently,
$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \begin{vmatrix} F_{1} & F_{2} & F_{3} \\ \frac{\partial X_{1}}{\partial s} & \frac{\partial X_{2}}{\partial s} & \frac{\partial X_{3}}{\partial s} \\ \frac{\partial X_{1}}{\partial t} & \frac{\partial X_{2}}{\partial t} & \frac{\partial X_{3}}{\partial t} \end{vmatrix} ds dt.$$

Applications of surface integrals

• Mass of a shell

If f is the density of a shell P, then $\iint_P f \, dS$ is the mass of P.

• Center of mass of a shell

If f is the density of a shell P, then

$$\frac{\iint_P x f(x,y,z) \, dS}{\iint_P f \, dS}, \quad \frac{\iint_P y f(x,y,z) \, dS}{\iint_P f \, dS}, \quad \frac{\iint_P z f(x,y,z) \, dS}{\iint_P f \, dS}$$

are coordinates of the center of mass of P.

Flux of fluid

If **F** is the velocity field of a fluid, then $\iint_P \mathbf{F} \cdot d\mathbf{S}$ is the flux of the fluid across the surface P.

Surface integrals and reparametrization

Given two smooth parametrized surfaces $\mathbf{X}:D_1\to\mathbb{R}^3$ and $\mathbf{Y}:D_2\to\mathbb{R}^3$, we say that \mathbf{Y} is a **smooth reparametrization** of \mathbf{X} if there exists an invertible function $\mathbf{H}:D_2\to D_1$ such that $\mathbf{Y}=\mathbf{X}\circ\mathbf{H}$ and both \mathbf{H} and \mathbf{H}^{-1} are smooth.

Theorem Any scalar surface integral is invariant under smooth reparametrizations.

As a consequence, we can define the scalar integral of a function over a non-parametrized smooth surface.

Any vector surface integral can be represented as a scalar surface integral:

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \mathbf{N}(s,t) \, ds \, dt = \iint_{D} (\mathbf{F} \cdot \mathbf{n}) \, dS,$$

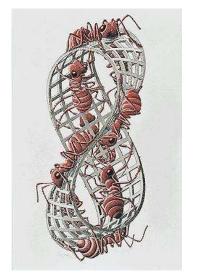
where $\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|}$ is a unit normal vector to the surface. Note that \mathbf{n} depends continuously on a point on the surface, hence determining an **orientation** of \mathbf{X} .

A smooth reparametrization may be orientation-preserving (when \mathbf{n} is preserved) or orientation-reversing (when \mathbf{n} is changed to $-\mathbf{n}$).

Theorem Any vector surface integral is invariant under smooth orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector field over a non-parametrized, oriented smooth surface.

Moebius strip: non-orientable surface



M. C. Escher, 1963

Example

Let C denote the closed cylinder with bottom given by z = 0, top given by z = 4, and lateral surface given by $x^2 + y^2 = 9$. We orient C with outward normals.

$$\iint_{\mathcal{C}} (x\mathbf{e}_1 + y\mathbf{e}_2) \cdot d\mathbf{S} = ?$$

The top of the cylinder is parametrized by $\mathbf{X}_{\mathrm{top}}:D\to\mathbb{R}^3$, $\mathbf{X}_{\mathrm{top}}(x,y)=(x,y,4)$, where

$$D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9\}.$$

The bottom is parametrized by $\mathbf{X}_{\mathrm{bot}}: D \to \mathbb{R}^3$, $\mathbf{X}_{\mathrm{bot}}(x,y) = (x,y,0)$. The lateral surface is parametrized by $\mathbf{X}_{\mathrm{lat}}: [0,2\pi] \times [0,4] \to \mathbb{R}^3$, $\mathbf{X}_{\mathrm{lat}}(\phi,z) = (3\cos\phi,3\sin\phi,z)$.

We have
$$\frac{\partial \mathbf{X}_{\mathrm{top}}}{\partial x} = (1,0,0)$$
, $\frac{\partial \mathbf{X}_{\mathrm{top}}}{\partial y} = (0,1,0)$. Hence $\frac{\partial \mathbf{X}_{\mathrm{top}}}{\partial x} \times \frac{\partial \mathbf{X}_{\mathrm{top}}}{\partial y} = \mathbf{e}_1 \times \mathbf{e}_2 = \mathbf{e}_3$.

Since
$$\mathbf{X}_{\mathrm{bot}} = \mathbf{X}_{\mathrm{top}} - (0, 0, 4)$$
, we also have $\frac{\partial \mathbf{X}_{\mathrm{bot}}}{\partial x} = \mathbf{e}_1$, $\frac{\partial \mathbf{X}_{\mathrm{bot}}}{\partial y} = \mathbf{e}_2$, and $\frac{\partial \mathbf{X}_{\mathrm{bot}}}{\partial x} \times \frac{\partial \mathbf{X}_{\mathrm{bot}}}{\partial y} = \mathbf{e}_3$.

Further, $\frac{\partial \mathbf{X}_{\text{lat}}}{\partial \phi} = (-3 \sin \phi, 3 \cos \phi, 0)$ and $\frac{\partial \mathbf{X}_{\text{lat}}}{\partial z} = (0, 0, 1)$. Therefore

$$\frac{\partial \mathbf{X}_{\mathrm{lat}}}{\partial \phi} \times \frac{\partial \mathbf{X}_{\mathrm{lat}}}{\partial z} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ -3\sin\phi & 3\cos\phi & 0 \\ 0 & 0 & 1 \end{vmatrix} = (3\cos\phi, 3\sin\phi, 0).$$

We observe that X_{top} and X_{lat} agree with the orientation of the surface C while X_{bot} does not. It follows that

$$\iint_{C} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{X}_{\text{top}}} \mathbf{F} \cdot d\mathbf{S} - \iint_{\mathbf{X}_{\text{bot}}} \mathbf{F} \cdot d\mathbf{S} + \iint_{\mathbf{X}_{\text{lat}}} \mathbf{F} \cdot d\mathbf{S}.$$

Integrating the vector field $\mathbf{F} = x\mathbf{e}_1 + y\mathbf{e}_2$ over each part of C, we obtain:

$$\iint_{\mathbf{X}_{\text{top}}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (x, y, 0) \cdot (0, 0, 1) \, dx \, dy = \iint_{D} 0 \, dx \, dy = 0,$$

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (x, y, 0) \cdot (0, 0, 1) \, dx \, dy = \iint_{D} 0 \, dx \, dy = 0,$$

$$\begin{split} &\iint_{\mathbf{X}_{\mathrm{lat}}} \mathbf{F} \cdot d\mathbf{S} = \\ &= \iint_{[0,2\pi] \times [0,4]} (3\cos\phi, 3\sin\phi, 0) \cdot (3\cos\phi, 3\sin\phi, 0) \, d\phi \, dz \\ &= \iint_{[0,2\pi] \times [0,4]} 9 \, d\phi \, dz = 72\pi. \end{split}$$

Thus
$$\iint_{\mathbf{G}} \mathbf{F} \cdot d\mathbf{S} = 72\pi$$
.