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Lecture 35:
Conservative vector fields.

Area of a surface.
Surface integrals.



Conservative vector fields

Let R be an open region in R
n such that any two

points in R can be connected by a continuous path.
Such regions are called (arcwise) connected.

Definition. A continuous vector field F : R → R
n

is called conservative if

∫

C1

F · ds =

∫

C2

F · ds

for any two simple, piecewise smooth, oriented

curves C1,C2 ⊂ R with the same initial and
terminal points.

An equivalent condition is that

∮

C

F · ds = 0

for any piecewise smooth closed curve C ⊂ R.



Conservative vector fields

Theorem The vector field F is conservative if and
only if it is a gradient field, that is, F = ∇f for
some function f : R → R. If this is the case, then

∫

C

F · ds = f (B)− f (A)

for any piecewise smooth, oriented curve C ⊂ R

that connects the point A to the point B .

Remark. In the case F is a force field, conservativity
means that energy is conserved. Moreover, in this

case the function f is the potential energy.



Test of conservativity

Theorem If a smooth field F = (F1, F2, . . . , Fn) is
conservative in a region R ⊂ R

n, then the Jacobian matrix

∂(F1, F2, . . . , Fn)

∂(x1, x2, . . . , xn)
is symmetric everywhere in R , that is,

∂Fi

∂xj
=

∂Fj

∂xi
for i 6= j .

Indeed, if the field F is conservative, then F = ∇f for some
smooth function f : R → R. It follows that the Jacobian
matrix of F is the Hessian matrix of f , that is, the matrix of

second-order partial derivatives:
∂Fi

∂xj
=

∂2f

∂xj ∂xi
.

Remark. The converse of the theorem holds provided that the
region R is simply-connected, which means that any closed
path in R can be continuously shrunk within R to a point.



Finding scalar potential

Example. F(x , y ) = (2xy 3 + 3y cos 3x , 3x2y 2 + sin 3x).

The vector field F is conservative if ∂F1/∂y = ∂F2/∂x .

∂F1

∂y
= 6xy 2 + 3 cos 3x ,

∂F2

∂x
= 6xy 2 + 3 cos 3x .

Thus F = ∇f for some function f (scalar potential of F),

that is,
∂f

∂x
= 2xy 3 + 3y cos 3x ,

∂f

∂y
= 3x2y 2 + sin 3x .

Integrating the second equality by y , we get

f (x , y ) =

∫

(3x2y 2 + sin 3x) dy = x2y 3 + y sin 3x + g(x).

Substituting this into the first equality, we obtain that
2xy 3 + 3y cos 3x + g ′(x) = 2xy 3 + 3y cos 3x . Hence
g ′(x) = 0 so that g(x) = c, a constant. Then
f (x , y ) = x2y 3 + y sin 3x + c.



Surface

Suppose D1 and D2 are domains in R
3 and T : D1 → D2 is an

invertible map such that both T and T−1 are smooth. Then
we say that T defines curvilinear coordinates in D1.

Definition. A nonempty set S ⊂ R
3 is called a smooth

surface if for every point p ∈ S there exist curvilinear
coordinates T : D1 → D2 in a neighborhood of p such that
T(p) = 0 and either T(S ∩ D1) = {(x , y , z) ∈ D2 | z = 0} or
T(S ∩ D1) = {(x , y , z) ∈ D2 | z = 0, y ≥ 0}. In the first
case, p is called an interior point of the surface S , in the
second case, p is called a boundary point of S .

The set of all boundary points of the surface S is called the
boundary of S and denoted ∂S .

A smooth surface S is called complete if for any convergent
sequence of points from S , the limit belongs to S as well. A
complete surface with no boundary points is called closed.



Parametrized surfaces

Definition. Let D ⊂ R
2 be a connected, bounded region.

A continuous one-to-one map X : D → R
3 is called a

parametrized surface. The image X(D) is called the
underlying surface.

The parametrized surface is smooth if X is smooth and,
moreover, the vectors ∂X

∂s
(s0, t0) and ∂X

∂t
(s0, t0) are linearly

independent for all (s0, t0) ∈ D. If this is the case, then the
plane in R

3 through the point X(s0, t0) parallel to vectors
∂X
∂s
(s0, t0) and ∂X

∂t
(s0, t0) is called the tangent plane to

X(D) at X(s0, t0).

Example. Suppose f : R3 → R is a smooth function and
consider a level set P = {(x , y , z) : f (x , y , z) = c}, c ∈ R.
If ∇f 6= 0 at some point p ∈ P, then near that point P is
the underlying surface of a parametrized surface. Moreover,
the gradient (∇f )(p) is orthogonal to the tangent plane at p.



Plane in space

Consider a map X : R2 → R
3 given by

X

(

s

t

)

=





b1
b2
b3



+





a11 a12
a21 a22
a31 a32





(

s

t

)

.

Partial derivatives ∂X
∂s

and ∂X
∂t

are constant, namely, they are
columns of the matrix A = (aij). Assume that the columns
are linearly independent. Then X is a parametrized surface.
The underlying surface is a plane Π. The tangent plane at
every point is Π itself.

For a measurable set D ⊂ R
2, the image X(D) is measurable

in the plane Π. Moreover, area

(

X(D)
)

= α area(D) for
some fixed scalar α. To determine α, consider the unit square
Q = [0, 1]× [0, 1]. The image X(Q) is a parallelogram with
adjacent sides represented by vectors ∂X

∂s
and ∂X

∂t
. We obtain

that α = area

(

X(Q)
)

= ‖∂X
∂s

× ∂X
∂t
‖.



Area of a surface

Let P be a smooth surface parametrized by X : D → R
3.

Then the area of P is

area(P) =

∫∫

D

∥

∥

∥

∥

∂X

∂s
×

∂X

∂t

∥

∥

∥

∥

ds dt.

Suppose P is the graph of a smooth function g : D → R, i.e.,
P is given by z = g(x , y ). We have a natural parametrization
X : D → R

3, X(x , y ) = (x , y , g(x , y )). Then ∂X
∂x

= (1, 0, g ′
x)

and ∂X
∂y

= (0, 1, g ′
y). Consequently,

∂X

∂x
×

∂X

∂y
=

∣

∣

∣

∣

∣

∣

e1 e2 e3
1 0 g ′

x

0 1 g ′
y

∣

∣

∣

∣

∣

∣

= (−g ′
x ,−g ′

y , 1).

It follows that

area(P) =

∫∫

D

√

1 + |g ′
x |

2 + |g ′
y |

2 dx dy .



Scalar surface integral

Scalar surface integral is an integral of a scalar function f over
a parametrized surface X : D → R

3 relative to the area
element of the surface. It can be defined as a limit of
Riemann sums

S(f ,R , τj) =
∑k

j=1
f
(

x(τj)
)

area

(

X(Dj)
)

,

where R = {D1,D2, . . . ,Dk} is a partition of D into small
pieces and τj ∈ Dj for 1 ≤ j ≤ k.

Theorem Let X : D → R
3 be a smooth parametrized

surface, where D ⊂ R
2 is a bounded region. Then for any

continuous function f : X(D) → R,
∫∫

X

f dS =

∫∫

D

f
(

X(s, t)
)

∥

∥

∥

∥

∂X

∂s
×

∂X

∂t

∥

∥

∥

∥

ds dt.



Vector surface integral

Vector surface integral is an integral of a vector field over a
smooth parametrized surface. It is a scalar.

Definition. Let X : D → R
3 be a smooth parametrized

surface, where D ⊂ R
2 is a bounded region. Then for any

continuous vector field F : X(D) → R
3, the vector integral of

F along X is
∫∫

X

F · dS =

∫∫

D

F
(

X(s, t)) ·N(s, t) ds dt,

where N = ∂X
∂s

× ∂X
∂t
, a normal vector to the surface.

Equivalently,

∫∫

X

F · dS =

∫∫

D

∣

∣

∣

∣

∣

∣

∣

F1 F2 F3
∂X1

∂s
∂X2

∂s
∂X3

∂s

∂X1

∂t
∂X2

∂t
∂X3

∂t

∣

∣

∣

∣

∣

∣

∣

ds dt.



Applications of surface integrals

• Mass of a shell

If f is the density of a shell P, then
∫∫

P
f dS is the mass of P.

• Center of mass of a shell

If f is the density of a shell P, then
∫∫

P
xf (x , y , z) dS
∫∫

P
f dS

,

∫∫

P
yf (x , y , z) dS
∫∫

P
f dS

,

∫∫

P
zf (x , y , z) dS
∫∫

P
f dS

are coordinates of the center of mass of P.

• Flux of fluid

If F is the velocity field of a fluid, then
∫∫

P
F · dS is the flux

of the fluid across the surface P.



Surface integrals and reparametrization

Given two smooth parametrized surfaces
X : D1 → R

3 and Y : D2 → R
3, we say that Y is a

smooth reparametrization of X if there exists an
invertible function H : D2 → D1 such that
Y = X ◦H and both H and H−1 are smooth.

Theorem Any scalar surface integral is invariant

under smooth reparametrizations.

As a consequence, we can define the scalar integral
of a function over a non-parametrized smooth

surface.



Any vector surface integral can be represented as a scalar
surface integral:
∫∫

X

F · dS =

∫∫

D

F
(

X(s, t)) ·N(s, t) ds dt =

∫∫

D

(F · n) dS ,

where n = N
‖N‖

is a unit normal vector to the surface. Note

that n depends continuously on a point on the surface, hence
determining an orientation of X.

A smooth reparametrization may be orientation-preserving
(when n is preserved) or orientation-reversing (when n is
changed to −n).

Theorem Any vector surface integral is invariant under
smooth orientation-preserving reparametrizations and changes
its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector
field over a non-parametrized, oriented smooth surface.



Moebius strip: non-orientable surface

M.C. Escher, 1963



Example

Let C denote the closed cylinder with bottom given
by z = 0, top given by z = 4, and lateral surface

given by x2 + y 2 = 9. We orient C with outward
normals.

∫∫

C

(xe1 + ye2) · dS = ?

The top of the cylinder is parametrized by Xtop : D → R
3,

Xtop(x , y ) = (x , y , 4), where

D = {(x , y ) ∈ R
2 : x2 + y 2 ≤ 9}.

The bottom is parametrized by Xbot : D → R
3,

Xbot(x , y ) = (x , y , 0). The lateral surface is parametrized by
Xlat : [0, 2π]× [0, 4] → R

3, Xlat(φ, z) = (3 cosφ, 3 sinφ, z).



We have ∂Xtop

∂x
= (1, 0, 0), ∂Xtop

∂y
= (0, 1, 0). Hence

∂Xtop

∂x
× ∂Xtop

∂y
= e1 × e2 = e3.

Since Xbot = Xtop − (0, 0, 4), we also have ∂Xbot

∂x
= e1,

∂Xbot

∂y
= e2, and ∂Xbot

∂x
× ∂Xbot

∂y
= e3.

Further, ∂Xlat

∂φ
= (−3 sinφ, 3 cosφ, 0) and ∂Xlat

∂z
= (0, 0, 1).

Therefore

∂Xlat

∂φ
×
∂Xlat

∂z
=

∣

∣

∣

∣

∣

∣

e1 e2 e3
−3 sinφ 3 cosφ 0

0 0 1

∣

∣

∣

∣

∣

∣

= (3 cosφ, 3 sinφ, 0).

We observe that Xtop and Xlat agree with the orientation of
the surface C while Xbot does not. It follows that

∫∫

C

F · dS =

∫∫

Xtop

F · dS−

∫∫

Xbot

F · dS+

∫∫

Xlat

F · dS.



Integrating the vector field F = xe1 + ye2 over each part of
C , we obtain:
∫∫

Xtop

F ·dS =

∫∫

D

(x , y , 0) · (0, 0, 1) dx dy =

∫∫

D

0 dx dy = 0,

∫∫

Xbot

F ·dS =

∫∫

D

(x , y , 0) · (0, 0, 1) dx dy =

∫∫

D

0 dx dy = 0,

∫∫

Xlat

F · dS =

=

∫∫

[0,2π]×[0,4]

(3 cosφ, 3 sinφ, 0) · (3 cosφ, 3 sinφ, 0) dφ dz

=

∫∫

[0,2π]×[0,4]

9 dφ dz = 72π.

Thus

∫∫

C

F · dS = 72π.


