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Topics in Applied Mathematics I

Lecture 37:
Review for Test 3.



Topics for Test 3

Vector analysis (Leon/Colley 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Sample problems for Test 3

Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

Problem 2 Evaluate a double integral
¨

P

(

2x + 3y − cos(πx + 2πy)
)

dx dy

over a parallelogram P with vertices (−1,−1),

(1, 0), (2, 2), and (0, 1).



Sample problems for Test 3

Problem 3 Find the area of a pentagon with

vertices (0, 0), (4, 0), (5, 2), (3, 4), and (−1, 2).

Problem 4 Consider a vector field

F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(i) Verify that the field F is conservative.

(ii) Find a function f such that F = ∇f .



Sample problems for Test 3

Problem 5 Let C be a solid cylinder bounded by planes
z = 0, z = 2 and a cylindrical surface x2 + y 2 = 1. Orient
the boundary ∂C with outward normals and evaluate a surface
integral ‹

∂C

(x2e1 + y 2e2 + z2e3) · dS.

Problem 6 Let D be a region in R
3 bounded by a paraboloid

z = x2 + y 2 and a plane z = 9. Let S denote the part of the
paraboloid that bounds D, oriented by outward normals.
Evaluate a surface integral

¨

S

curl(F) · dS,

where F(x , y , z) = (ex
2+z2 , xy + xz + yz , exyz).



Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

For any vector field F = (F1, F2, F3) we have,

informally,

curlF = ∇× F =

∣

∣

∣

∣

∣

∣

∣
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∂
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∂

∂z
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∣

∣

∣

∣

or, formally,

curlF =
(∂F3
∂y

−
∂F2
∂z

,
∂F1
∂z

−
∂F3
∂x

,
∂F2
∂x

−
∂F1
∂y

)

.



Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

Let G = curlF, G = (G1,G2,G3). We obtain

G1 =
∂F3

∂y
−

∂F2

∂z
=

∂

∂y
(x+sin y )−

∂

∂z
(zex+y ) = cos y −ex+y ,

G2 =
∂F1

∂z
−

∂F3

∂x
=

∂

∂z
(x2 + y 2)−

∂

∂x
(x + sin y ) = −1,

G3 =
∂F2

∂x
−

∂F1

∂y
=

∂

∂x
(zex+y )−

∂

∂y
(x2 + y 2) = zex+y − 2y .



Hence G = curlF = (cos y−ex+y , −1, zex+y−2y ).

Now let H = curlG, H = (H1,H2,H3). We obtain

H1 =
∂G3

∂y
−

∂G2

∂z
=

∂

∂y
(zex+y − 2y )−

∂

∂z
(−1) = zex+y − 2,

H2 =
∂G1

∂z
−
∂G3

∂x
=

∂

∂z
(cos y−ex+y)−

∂

∂x
(zex+y−2y )=−zex+y ,

H3 =
∂G2

∂x
−
∂G1

∂y
=

∂

∂x
(−1)−

∂

∂y
(cos y−ex+y ) = sin y+ex+y .

Thus curl(curl(F)) = (zex+y−2, −zex+y , sin y+ex+y).



Problem 2 Evaluate a double integral
¨

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

over a parallelogram P with vertices (−1,−1), (1, 0), (2, 2),
and (0, 1).

Let us change coordinates in this integral so that the domain
of integration becomes the unit square Q = [0, 1]× [0, 1].
We are going to use a substitution of the form

(x , y ) = L(u, v ) = (a11u + a12v + b1, a21u + a22v + b2),

where aij , bi are constants. The constants are determined
from the conditions L(0, 0) = (−1,−1), L(1, 0) = (1, 0), and
L(0, 1)= (0, 1). That is, (b1, b2)=(−1,−1), (a11+b1, a21+b2)
= (1, 0), and (a12+b1, a22+b2) = (0, 1). We obtain that

L

(

u
v

)

=

(

2u + v − 1
u + 2v − 1

)

=

(

2 1
1 2

)(

u
v

)

+

(

−1
−1

)

.

The Jacobian matrix J of L is constant: J =

(

2 1
1 2

)

.



Changing coordinates in the integral from (x , y ) to (u, v ) so
that (x , y ) = L(u, v ) = (2u + v − 1, u + 2v − 1), we obtain
¨

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

=

¨

L−1(P)

(

7u + 8v − 5− cos(4πu + 5πv − 3π)
)

|det J| du dv

=

ˆ 1

0

ˆ 1

0

3
(

7u + 8v − 5 + cos(4πu + 5πv )
)

du dv

=
21

2
+ 12− 15 +

ˆ 1

0

ˆ 1

0

3 cos(4πu + 5πv ) du dv .

Further,

ˆ 1

0

3 cos(4πu + 5πv ) du =
3

4π
sin(4πu + 5πv )

∣

∣

∣

1

u=0

=
3

4π

(

sin(4π + 5πv )− sin(5πv )
)

= 0 for all v .

It follows that

¨

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy =
15

2
.



Problem 3 Find the area of a pentagon with

vertices (0, 0), (4, 0), (5, 2), (3, 4), and (−1, 2).

Segments (0, 0)−(3, 4) and (0, 0)−(5, 2) cut the pentagon
into three triangles: ∆1 with vertices (0, 0), (3, 4), and
(−1, 2); ∆2 with vertices (0, 0), (5, 2), and (3, 4); and ∆3 with
vertices (0, 0), (4, 0), and (5, 2).

Area of a parallelogram with adjacent sides represented by
vectors v1, v2 ∈ R

2 equals |detA|, where A = (v1, v2), a
matrix whose columns are v1 and v2. Area of the triangle
with adjacent sides represented by the same vectors is one half
of that.

Hence the area of the triangle ∆i equals
1
2
|detAi |, where

A1 =

(

3 −1
4 2

)

, A2 =

(

5 3
2 4

)

, A3 =

(

4 5
0 2

)

.

We obtain that detA1 = 10, detA2 = 14, and detA3 = 8.
The area of the pentagon equals 1

2
(10 + 14 + 8) = 16.



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(i) Verify that the field F is conservative.

Since F is a smooth vector field on the entire space, it is
conservative if and only if its Jacobian matrix is symmetric
everywhere in R

3. For vector fields on R
3, this is equivalent

to curl(F) = 0. We have to verify three identities.

∂F1

∂y
=

∂F2

∂x
:

∂

∂y
(yz+2 cos 2x) =

∂

∂x
(xz−ez ) ⇐⇒ z = z ,

∂F1

∂z
=

∂F3

∂x
:

∂

∂z
(yz+2 cos 2x) =

∂

∂x
(xy−yez) ⇐⇒ y = y ,

∂F2

∂z
=

∂F3

∂y
:

∂

∂z
(xz − ez) =

∂

∂y
(xy − yez)

⇐⇒ x − ez = x − ez .



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

We are looking for a function f : R3 → R such that
∂f

∂x
= yz + 2 cos 2x ,

∂f

∂y
= xz − ez ,

∂f

∂z
= xy − yez .

Integrating the third equality by z , we get

f (x , y , z) =

ˆ

(xy − yez) dz = xyz − yez + g(x , y ).

Substituting this into the other equalities, we obtain that
yz + g ′

x = yz + 2 cos 2x and xz − ez + g ′
y = xz − ez .

Hence g ′
y = 0 so that g does not depend on y . Since

g ′
x = 2 cos 2x , we obtain that

g(x , y ) =

ˆ

2 cos 2x dx = sin 2x + c, where c is a constant.

Finally, f (x , y , z) = xyz − yez + sin 2x + c.



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

Alternative solution: If F = ∇f , then
ˆ

x

F · ds = f (A1)− f (A0)

for any points A0,A1 ∈ R
3 and any path x joining A0 to A1.

We can use this relation to recover the function f .

For any given point A = (x , y , z) we consider a linear path xA
from the origin to A, xA : [0, 1] → R

3, xA(t) = (tx , ty , tz).
Then

f (A)− f (0) =

ˆ

xA

F · ds =

ˆ 1

0

F(xA(t)) · x
′
A(t) dt.



f (A)− f (0) =

ˆ

xA

F · ds =

ˆ 1

0

F(xA(t)) · x
′
A(t) dt

=

ˆ 1

0

(t2yz + 2 cos 2tx , t2xz − etz , t2xy − tyetz ) · (x , y , z) dt

=

ˆ 1

0

(

(t2yz +2 cos 2tx)x +(t2xz− etz )y +(t2xy − tyetz )z
)

dt

=

ˆ 1

0

(3t2xyz + 2x cos 2tx − yetz − tyzetz) dt

= t3xyz
∣

∣

∣

1

t=0
+ sin 2tx

∣

∣

∣

1

t=0
− ytetz

∣

∣

∣

1

t=0
= xyz + sin 2x − yez .

Thus f (x , y , z) = xyz + sin 2x − yez + c, where c = f (0) is
a constant.



Problem 5 Let C be a solid cylinder bounded by planes
z = 0, z = 2 and a cylindrical surface x2 + y 2 = 1. Orient
the boundary ∂C with outward normals and evaluate a surface
integral ‹

∂C

(x2e1 + y 2e2 + z2e3) · dS.

By Gauss’ Theorem,
‹

∂C

(x2e1+y 2e2+z2e3)·dS =

˚

C

∇·(x2e1+y 2e2+z2e3) dV

=

˚

C

(

∂

∂x
(x2) +

∂

∂y
(y 2) +

∂

∂z
(z2)

)

dx dy dz

=

˚

C

2(x + y + z) dx dy dz .



To evaluate the integral, we switch to cylindrical coordinates
(r , φ, z) using the substitution x = r cos φ, y = r sinφ, z = z .

Jacobian matrix J =
∂(x , y , z)

∂(r , φ, z)
=





cos φ −r sinφ 0
sinφ r cosφ 0
0 0 1



.

˚

C

2(x + y + z) dx dy dz

=

ˆ 2

0

ˆ 2π

0

ˆ 1

0

2(r cosφ+ r sinφ+ z)|det J| dr dφ dz

=

ˆ 2

0

ˆ 2π

0

ˆ 1

0

2(r cosφ+ r sinφ+ z)r dr dφ dz

=

ˆ 2

0

ˆ 2π

0

ˆ 1

0

(

2r 2(cosφ+ sinφ) + 2rz
)

dr dφ dz

=

ˆ 2

0

ˆ 2π

0

ˆ 1

0

2rz dr dφ dz = 2

ˆ 2

0

z dz ·

ˆ 2π

0

dφ ·

ˆ 1

0

r dr = 4π.



Alternative evaluation of the triple integral:
Consider an invertible linear transformation L : R3 → R

3

given by L(x , y , z) = (−x ,−y , z). The matrix of L (relative
to the standard basis) is

M =





−1 0 0
0 −1 0
0 0 1



.

It is also the Jacobian matrix of L at every point. Changing
coordinates from (x , y , z) to (u, v ,w) so that
(x , y , z) = L(u, v ,w), we obtain
˚

C

2(x + y ) dx dy dz =

˚

L−1(C)

2(−u − v ) |detM | du dv dw

= −

˚

C

2(u + v ) du dv dw .

It follows that

˚

C

2(x + y ) dx dy dz = 0.



By linearity of the integral,
‹

∂C

(x2e1 + y 2e2 + z2e3)·dS =

˚

C

2(x + y + z) dx dy dz

=

˚

C

2(x+y ) dx dy dz+

˚

C

2z dx dy dz =

˚

C

2z dx dy dz .

The cylinder C can be represented as C = U × [0, 2], where
U is the unit disc in the plane,

U = {(x , y ) ∈ R
2 : x2 + y 2 ≤ 1}.

By Fubini’s Theorem,
˚

C

2z dx dy dz =

¨

U

(
ˆ 2

0

2z dz

)

dx dy

=

¨

U

4 dx dy = 4 area(U) = 4π.



Problem 6 Let D be a region in R
3 bounded by a paraboloid

z = x2 + y 2 and a plane z = 9. Let S denote the part of the
paraboloid that bounds D, oriented by outward normals.
Evaluate a surface integral

¨

S

curl(F) · dS,

where F(x , y , z) = (ex
2+z2 , xy + xz + yz , exyz).

We have curlF =
(∂F3

∂y
−

∂F2

∂z
,
∂F1

∂z
−

∂F3

∂x
,
∂F2

∂x
−

∂F1

∂y

)

= (xzexyz − x − y , 2zex
2+z2 − yzexyz , y + z).

Direct evaluation of the surface integral seems problematic.
By Stokes’ Theorem, the surface integral equals the integral of
the field F along the circle ∂S . However evaluation of this
line integral seems problematic as well.



By the corollary of Stokes’ Theorem,
¨

∂D

curl(F)·dS = 0.

It follows thaẗ

S

curl(F)·dS = −

¨

∂D\S

curl(F)·dS.

We observe that ∂D \ S is a horizontal disc Q×{9}, where
Q = {(x , y ) ∈ R

2 : x2 + y 2 ≤ 9}. It is oriented by the upward
normal vector n = (0, 0, 1). Now
¨

∂D\S

curl(F)·dS =

¨

∂D\S

curl(F)·n dS

=

¨

Q

(y + 9) dx dy =

¨

Q

9 dx dy = 9 area(Q) = 81π.

Thus

¨

S

curl(F)·dS = −81π.


