MATH 311
 Topics in Applied Mathematics I

Lecture 39:
Review for the final exam (continued).

Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Change of basis for a linear operator.
- Similarity of matrices.

Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1-5.6, 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Euclidean structure in \mathbb{R}^{n} (length, angle, dot product)
- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Topics for the final exam: Part IV

Vector analysis (L/C 8.1-8.4, 9.1-9.5, 10.1-10.3, 11.1-11.3)

- Gradient, divergence, and curl
- Fubini's Theorem
- Change of coordinates in a multiple integral
- Geometric meaning of the determinant
- Length of a curve
- Line integrals
- Green's Theorem
- Conservative vector fields
- Area of a surface
- Surface integrals
- Gauss' Theorem
- Stokes' Theorem

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.
(d) Find the matrix of the operator L^{2018} (L applied 2018 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right|
$$

$$
=\left|\begin{array}{cc}
0 & -4 / 5 \\
y & z
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
3 / 5 & -4 / 5 \\
x & z
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
3 / 5 & 0 \\
x & y
\end{array}\right| \mathbf{e}_{3}
$$

$$
=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3}=\left(\frac{4}{5} y,-\frac{4}{5} x-\frac{3}{5} z, \frac{3}{5} y\right) .
$$

In particular, $L\left(\mathbf{e}_{1}\right)=\left(0,-\frac{4}{5}, 0\right), \quad L\left(\mathbf{e}_{2}\right)=\left(\frac{4}{5}, 0, \frac{3}{5}\right)$, $L\left(\mathbf{e}_{3}\right)=\left(0,-\frac{3}{5}, 0\right)$.

Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator L is spanned by columns of the matrix B. It follows that Range (L) is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{gathered}
$$

Alternatively, the kernel of L is the set of vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix B :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator L^{2018} is B^{2018}.
Since the matrix B has eigenvalues $0, i$, and $-i$, it is diagonalizable in \mathbb{C}^{3}. Namely, $B=U D U^{-1}$, where U is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2018}=U D^{2018} U^{-1}$. We have that $D^{2018}=$ $=\operatorname{diag}\left(0, i^{2018},(-i)^{2018}\right)=\operatorname{diag}(0,-1,-1)=D^{2}$. Hence

$$
B^{2018}=U D^{2} U^{-1}=B^{2}=\left(\begin{array}{ccc}
-0.64 & 0 & -0.48 \\
0 & -1 & 0 \\
-0.48 & 0 & -0.36
\end{array}\right)
$$

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $V \subset \mathbb{R}^{4}$ spanned by vectors $\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$, and $\mathbf{x}_{3}=(-3,7,1,3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V :

$$
\mathbf{p}=\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{v}_{3}, \mathbf{v}_{3}\right\rangle} \mathbf{v}_{3} .
$$

Then the distance from \mathbf{y} to V equals $\|\mathbf{y}-\mathbf{p}\|$.
Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Then the desired distance will be $\left\|\mathbf{v}_{4}\right\|$.
$\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$,
$\mathbf{x}_{3}=(-3,7,1,3), \mathbf{y}=(0,0,0,1)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=(1,-1,1,-1)$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,1,3,-1)-\frac{4}{4}(1,-1,1,-1)$
$=(0,2,2,0)$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{8}(0,2,2,0)$
$=(0,0,0,0)$.

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_{3} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. V is a plane, not a 3 -dimensional subspace. To fix things, it is enough to drop \mathbf{x}_{3}, i.e., we should orthogonalize vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}$.
$\tilde{\mathbf{v}}_{3}=\mathbf{y}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(0,0,0,1)-\frac{-1}{4}(1,-1,1,-1)-\frac{0}{8}(0,2,2,0)$
$=(1 / 4,-1 / 4,1 / 4,3 / 4)$.

$$
\left\|\tilde{\mathbf{v}}_{3}\right\|=\left|\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}\right)\right|=\frac{1}{4}|(1,-1,1,3)|=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2} .
$$

Area, volume, and determinants

- 2×2 determinants and plane geometry Let P be a parallelogram in the plane \mathbb{R}^{2}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are represented by adjacent sides of P. Then $\operatorname{area}(P)=|\operatorname{det} A|$, where $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, a matrix whose columns are \mathbf{v}_{1} and \mathbf{v}_{2}.
Consider a linear operator $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(\mathbf{v})=A \mathbf{v}$ for any column vector \mathbf{v}. Then $\operatorname{area}\left(L_{A}(D)\right)=|\operatorname{det} A| \operatorname{area}(D)$ for any bounded domain D.
- 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^{3}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are represented by adjacent edges of Π. Then volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, a matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
Similarly, volume $\left(L_{B}(D)\right)=|\operatorname{det} B| \operatorname{volume}(D)$ for any bounded domain $D \subset \mathbb{R}^{3}$.

Parallelepiped is a prism.
(Volume) $=($ area of the base $) \times($ height $)$
Area of the base $=\|\mathbf{y} \times \mathbf{z}\|$
Volume $=|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Tetrahedron is a pyramid.
$($ Volume $)=\frac{1}{3}($ area of the base $) \times($ height $)$
Area of the base $=\frac{1}{2}\|\mathbf{y} \times \mathbf{z}\|$
\Longrightarrow Volume $=\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

