MATH 311 Topics in Applied Mathematics I Lecture 39: Review for the final exam (continued).

Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1-3.6, 4.1-4.3)

• Vector spaces (vectors, matrices, polynomials, functional spaces).

• Subspaces. Nullspace, column space, and row space of a matrix.

- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Change of basis for a linear operator.
- Similarity of matrices.

Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1-5.6, 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Euclidean structure in \mathbb{R}^n (length, angle, dot product)
- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Topics for the final exam: Part IV

Vector analysis (*L/C* 8.1–8.4, 9.1–9.5, 10.1–10.3, 11.1–11.3)

- Gradient, divergence, and curl
- Fubini's Theorem
- Change of coordinates in a multiple integral
- Geometric meaning of the determinant
- Length of a curve
- Line integrals
- Green's Theorem
- Conservative vector fields
- Area of a surface
- Surface integrals
- Gauss' Theorem
- Stokes' Theorem

Problem. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}$, where $\mathbf{v}_0 = (3/5, 0, -4/5)$.

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.

(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L^{2018} (*L* applied 2018 times).

$$\mathcal{L}(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}, \quad \mathbf{v}_0 = (3/5, 0, -4/5).$$
Let $\mathbf{v} = (x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3.$ Then
$$\mathcal{L}(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 3/5 & 0 & -4/5 \\ x & y & z \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -4/5 \\ y & z \end{vmatrix} \mathbf{e}_1 - \begin{vmatrix} 3/5 & -4/5 \\ x & z \end{vmatrix} \mathbf{e}_2 + \begin{vmatrix} 3/5 & 0 \\ x & y \end{vmatrix} \mathbf{e}_3$$

$$= \frac{4}{5}y\mathbf{e}_1 - \left(\frac{4}{5}x + \frac{3}{5}z\right)\mathbf{e}_2 + \frac{3}{5}y\mathbf{e}_3 = \left(\frac{4}{5}y, -\frac{4}{5}x - \frac{3}{5}z, \frac{3}{5}y\right).$$

In particular, $L(\mathbf{e}_1) = (0, -\frac{4}{5}, 0)$, $L(\mathbf{e}_2) = (\frac{4}{5}, 0, \frac{3}{5})$, $L(\mathbf{e}_3) = (0, -\frac{3}{5}, 0)$.

Therefore
$$B = \begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix}$$
.

The range of the operator L is spanned by columns of the matrix B. It follows that $\operatorname{Range}(L)$ is the plane spanned by $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (4, 0, 3)$.

The kernel of *L* is the nullspace of the matrix *B*, i.e., the solution set for the equation $B\mathbf{x} = \mathbf{0}$.

$$\begin{pmatrix} 0 & 4/5 & 0 \\ -4/5 & 0 & -3/5 \\ 0 & 3/5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3/4 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\implies x + \frac{3}{4}z = y = 0 \implies \mathbf{x} = t(-3/4, 0, 1).$$

Alternatively, the kernel of *L* is the set of vectors $\mathbf{v} \in \mathbb{R}^3$ such that $L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \mathbf{0}$. It follows that this is the line spanned by $\mathbf{v}_0 = (3/5, 0, -4/5)$.

Characteristic polynomial of the matrix *B*:

$$\det(B-\lambda I)=egin{bmatrix} -\lambda & 4/5 & 0\ -4/5 & -\lambda & -3/5\ 0 & 3/5 & -\lambda \end{bmatrix}$$
= $-\lambda^3-(3/5)^2\lambda-(4/5)^2\lambda=-\lambda^3-\lambda=-\lambda(\lambda^2+1).$

The eigenvalues are 0, i, and -i.

The matrix of the operator L^{2018} is B^{2018} .

Since the matrix B has eigenvalues 0, i, and -i, it is diagonalizable in \mathbb{C}^3 . Namely, $B = UDU^{-1}$, where U is an invertible matrix with complex entries and

$$D = egin{pmatrix} 0 & 0 & 0 \ 0 & i & 0 \ 0 & 0 & -i \end{pmatrix}.$$

Then $B^{2018} = UD^{2018}U^{-1}$. We have that $D^{2018} =$ = diag $(0, i^{2018}, (-i)^{2018}) =$ diag $(0, -1, -1) = D^2$. Hence

$$B^{2018} = UD^2U^{-1} = B^2 = \begin{pmatrix} -0.64 & 0 & -0.48 \\ 0 & -1 & 0 \\ -0.48 & 0 & -0.36 \end{pmatrix}$$

Problem. Find the distance from the point $\mathbf{y} = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1, -1, 1, -1)$, $\mathbf{x}_2 = (1, 1, 3, -1)$, and $\mathbf{x}_3 = (-3, 7, 1, 3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V:

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \frac{\langle \mathbf{y}, \mathbf{v}_3 \rangle}{\langle \mathbf{v}_3, \mathbf{v}_3 \rangle} \mathbf{v}_3.$$

Then the distance from **y** to V equals $\|\mathbf{y} - \mathbf{p}\|$.

Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Then the desired distance will be $\|\mathbf{v}_4\|$.

$$\begin{aligned} \mathbf{x}_{1} &= (1, -1, 1, -1), \ \mathbf{x}_{2} &= (1, 1, 3, -1), \\ \mathbf{x}_{3} &= (-3, 7, 1, 3), \ \mathbf{y} &= (0, 0, 0, 1). \end{aligned}$$
$$\mathbf{v}_{1} &= \mathbf{x}_{1} &= (1, -1, 1, -1), \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} &= (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \\ &= (0, 2, 2, 0), \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \\ &= (0, 0, 0, 0). \end{aligned}$$

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . V is a plane, not a 3-dimensional subspace. To fix things, it is enough to drop \mathbf{x}_3 , i.e., we should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{split} \tilde{\mathbf{v}}_{3} &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{y}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \\ \tilde{\mathbf{v}}_{3} \| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{split}$$

Area, volume, and determinants

• 2×2 determinants and plane geometry

Let *P* be a parallelogram in the plane \mathbb{R}^2 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are represented by adjacent sides of *P*. Then $\operatorname{area}(P) = |\det A|$, where $A = (\mathbf{v}_1, \mathbf{v}_2)$, a matrix whose columns are \mathbf{v}_1 and \mathbf{v}_2 .

Consider a linear operator $L_A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L_A(\mathbf{v}) = A\mathbf{v}$ for any column vector \mathbf{v} . Then $\operatorname{area}(L_A(D)) = |\det A| \operatorname{area}(D)$ for any bounded domain D.

• 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^3 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ are represented by adjacent edges of Π . Then $\operatorname{volume}(\Pi) = |\det B|$, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, a matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

Similarly, volume $(L_B(D)) = |\det B|$ volume(D) for any bounded domain $D \subset \mathbb{R}^3$.

Parallelepiped is a prism. (Volume) = (area of the base) × (height) Area of the base = $\|\mathbf{y} \times \mathbf{z}\|$ Volume = $|\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$

Tetrahedron is a pyramid. (Volume) = $\frac{1}{3}$ (area of the base) × (height) Area of the base = $\frac{1}{2} ||\mathbf{y} \times \mathbf{z}||$ \implies Volume = $\frac{1}{6} |\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$