Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem 1 Find the point of intersection of the planes x + 2y - z = 1, x - 3y = -5, and 2x + y + z = 0 in \mathbb{R}^3 .

Problem 2 Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_2$$
, where $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 2, 2)$.

- (i) Find the matrix of the operator L.
- (ii) Find the dimensions of the range and the kernel of L.
- (iii) Find bases for the range and the kernel of L.

Problem 3 Let $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (1, 0, 1)$. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator on \mathbb{R}^3 such that $L(\mathbf{v}_1) = \mathbf{v}_2$, $L(\mathbf{v}_2) = \mathbf{v}_3$, $L(\mathbf{v}_3) = \mathbf{v}_1$.

- (i) Show that the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form a basis for \mathbb{R}^3 .
- (ii) Find the matrix of the operator L relative to the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(iii) Find the matrix of the operator L relative to the standard basis.

Problem 4 Let
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix B.

(ii) Find a basis for \mathbb{R}^3 consisting of eigenvectors of B.

(iii) Find an orthonormal basis for \mathbb{R}^3 consisting of eigenvectors of B.

(iv) Find a diagonal matrix D and an invertible matrix U such that $B = UDU^{-1}$.

Problem 5 Let V be a subspace of \mathbb{R}^4 spanned by vectors $\mathbf{x}_1 = (1, 1, 0, 0), \mathbf{x}_2 = (2, 0, -1, 1),$ and $\mathbf{x}_3 = (0, 1, 1, 0).$

(i) Find the distance from the point $\mathbf{y} = (0, 0, 0, 4)$ to the subspace V.

(ii) Find the distance from the point **y** to the orthogonal complement V^{\perp} .

Problem 6 Consider a vector field $\mathbf{F}(x, y, z) = xyz\mathbf{e}_1 + xy\mathbf{e}_2 + x^2\mathbf{e}_3$.

(i) Find $\operatorname{curl}(\mathbf{F})$.

(ii) Find the integral of the vector field $\operatorname{curl}(\mathbf{F})$ along a hemisphere $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \ge 0\}$. Orient the hemisphere by the normal vector $\mathbf{n} = (0, 0, 1)$ at the point (0, 0, 1).

Problem 7 Find the volume of a parallelepiped bounded by planes x + 2y - z = -1, x + 2y - z = 1, x - 3y = -5, x - 3y = 0, 2x + y + z = 0, and 2x + y + z = 2.