MATH 311

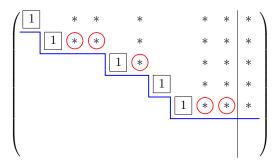
Topics in Applied Mathematics I

Lecture 4:

Gauss-Jordan reduction (continued).

Applications of systems of linear equations.

The goal of the **Gauss-Jordan reduction** is to convert the augmented matrix into **reduced row echelon form**:



- all entries below the staircase line are zero:
- each step of the staircase has height 1;
- each boxed entry is 1, the other entries in its column are zero;
 - each circle corresponds to a free variable.

How to solve a system of linear equations

- Order the variables.
- Write down the augmented matrix of the system.
- Convert the matrix to row echelon form.
- Check for consistency.
- Convert the matrix to **reduced row echelon form**.
- Write down the system corresponding to the reduced row echelon form.
- Determine leading and free variables.
- Rewrite the system so that the leading variables are on the left while everything else is on the right.
- Assign parameters to the free variables and write down the general solution in parametric form.

Example with a parameter.

$$\begin{cases} y + 3z = 0 \\ x + y - 2z = 0 \\ x + 2y + az = 0 \end{cases} (a \in \mathbb{R})$$

The system is **homogeneous** (all right-hand sides are zeros). Therefore it is consistent (x = y = z = 0) is a solution).

Augmented matrix:
$$\begin{pmatrix} 0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0 \end{pmatrix}$$

Since the 1st row cannot serve as a pivotal one, we interchange it with the 2nd row:

$$\begin{pmatrix} 0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 2 & a & 0 \end{pmatrix}$$
Now we can start the elimination.

First subtract the 1st row from the 3rd row:
$$\begin{pmatrix}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{pmatrix}$$

The 2nd row is our new pivotal row.

Subtract the 2nd row from the 3rd row:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & a+2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & a-1 & 0 \end{pmatrix}$$

At this point row reduction splits into two cases.

Case 1: $a \neq 1$. In this case, multiply the 3rd row by $(a-1)^{-1}$:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & a-1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 1 & -2 & 0 \\ 0 & \boxed{1} & 3 & 0 \\ 0 & 0 & \boxed{1} & 0 \end{pmatrix}$$

The matrix is converted into row echelon form. We proceed towards reduced row echelon form.

Subtract 3 times the 3rd row from the 2nd row:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Add 2 times the 3rd row to the 1st row:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Finally, subtract the 2nd row from the 1st row:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 \end{pmatrix}$$

Thus x = y = z = 0 is the only solution.

Case 2: a = 1. In this case, the matrix is already in row echelon form:

$$\begin{pmatrix}
\boxed{1} & 1 & -2 & 0 \\
0 & \boxed{1} & 3 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

To get reduced row echelon form, subtract the 2nd row from the 1st row:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \boxed{1} & 0 & -5 & 0 \\ 0 & \boxed{1} & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

z is a free variable.

$$\begin{cases} x - 5z = 0 \\ y + 3z = 0 \end{cases} \iff \begin{cases} x = 5z \\ y = -3z \end{cases}$$

System of linear equations:

Solution: If $a \neq 1$ then (x, y, z) = (0, 0, 0); if a = 1 then (x, y, z) = (5t, -3t, t), $t \in \mathbb{R}$.

$$\begin{cases} y + 3z = 0 \\ x + y - 2z \end{cases}$$

$$\begin{cases} y + 3z = 0 \\ x + y - 2z = 0 \\ x + 2y + az = 0 \end{cases}$$

$$\begin{cases} x + y - 2z = \\ x + 2y + az = \end{cases}$$

Applications of systems of linear equations

Problem 1. Find the point of intersection of the lines x - y = -2 and 2x + 3y = 6 in \mathbb{R}^2 .

$$\begin{cases} x - y = -2 \\ 2x + 3y = 6 \end{cases}$$

Problem 2. Find the point of intersection of the planes x - y = 2, 2x - y - z = 3, and x + y + z = 6 in \mathbb{R}^3 .

$$\begin{cases} x - y = 2 \\ 2x - y - z = 3 \\ x + y + z = 6 \end{cases}$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x) such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that
$$p(x) = ax^2 + bx + c$$
. Then $p(1) = a + b + c$, $p(2) = 4a + 2b + c$, $p(3) = 9a + 3b + c$.

$$\begin{cases} a+b+c = 4 \\ 4a+2b+c = 3 \\ 9a+3b+c = 4 \end{cases}$$

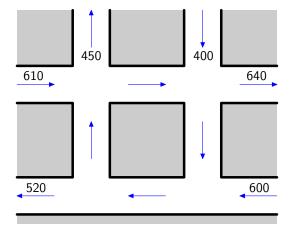
Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x) such that p(1) = 4, p(2) = 3, and p(3) = 4.

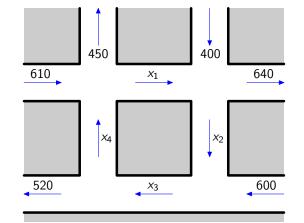
Alternative choice of coefficients:
$$p(x) = \tilde{a} + \tilde{b}x + \tilde{c}x^2$$
.
Then $p(1) = \tilde{a} + \tilde{b} + \tilde{c}$, $p(2) = \tilde{a} + 2\tilde{b} + 4\tilde{c}$, $p(3) = \tilde{a} + 3\tilde{b} + 9\tilde{c}$.

$$\begin{cases} \tilde{a} + b + \tilde{c} = 4 \\ \tilde{a} + 2\tilde{b} + 4\tilde{c} = 3 \\ \tilde{a} + 3\tilde{b} + 9\tilde{c} = 4 \end{cases}$$

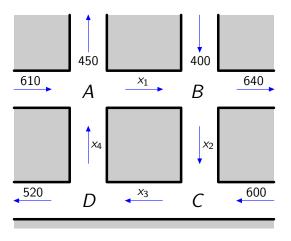
Traffic flow



Problem. Determine the amount of traffic between each of the four intersections.



 $x_1 = ?$, $x_2 = ?$, $x_3 = ?$, $x_4 = ?$



At each intersection, the incoming traffic has to match the outgoing traffic.

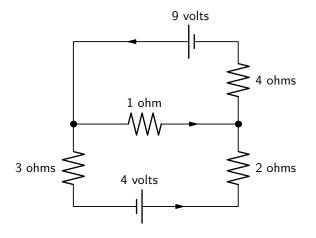
Intersection
$$A$$
: $x_4 + 610 = x_1 + 450$
Intersection B : $x_1 + 400 = x_2 + 640$
Intersection C : $x_2 + 600 = x_3$
Intersection D : $x_3 = x_4 + 520$

$$\begin{cases} x_4 + 610 = x_1 + 450 \\ x_1 + 400 = x_2 + 640 \\ x_2 + 600 = x_3 \\ x_3 = x_4 + 520 \end{cases}$$

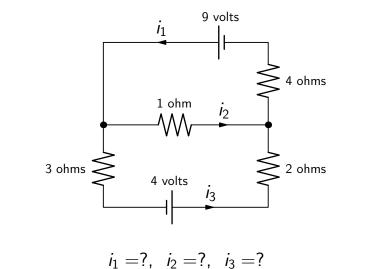
$$\iff \begin{cases} -x_1 + x_4 = -160 \\ x_1 - x_2 = 240 \\ x_2 - x_3 = -600 \\ x_3 - x_4 = 520 \end{cases}$$

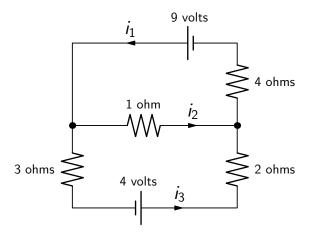
Intersection A.

Electrical network

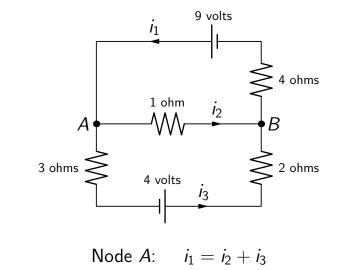


Problem. Determine the amount of current in each branch of the network.





Kirchhof's law #1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.



Node *B*: $i_2 + i_3 = i_1$

Electrical network

Kirchhof's law #2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current i, and the resistance R satisfy E = iR.

Top loop: $9 - i_2 - 4i_1 = 0$ Bottom loop: $4 - 2i_3 + i_2 - 3i_3 = 0$ Big loop: $4 - 2i_3 - 4i_1 + 9 - 3i_3 = 0$

Remark. The 3rd equation is the sum of the first two equations.

$$\begin{cases} i_1 = i_2 + i_3 \\ 9 - i_2 - 4i_1 = 0 \\ 4 - 2i_3 + i_2 - 3i_3 = 0 \end{cases}$$

$$\iff \begin{cases} i_1 - i_2 - i_3 = 0 \\ 4i_1 + i_2 = 9 \\ -i_2 + 5i_3 = 4 \end{cases}$$