MATH 311 Topics in Applied Mathematics I Lecture 6: Diagonal matrices. Inverse matrix.

### **Diagonal matrices**

If  $A = (a_{ij})$  is a square matrix, then the entries  $a_{ii}$  are called **diagonal entries**. A square matrix is called **diagonal** if all non-diagonal entries are zeros.

Example. 
$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, denoted diag $(7, 1, 2)$ .

Let 
$$A = \text{diag}(s_1, s_2, ..., s_n)$$
,  $B = \text{diag}(t_1, t_2, ..., t_n)$ .  
Then  $A + B = \text{diag}(s_1 + t_1, s_2 + t_2, ..., s_n + t_n)$ ,  
 $rA = \text{diag}(rs_1, rs_2, ..., rs_n)$ .

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -7 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

**Theorem** Let  $A = \operatorname{diag}(s_1, s_2, \ldots, s_n)$ ,  $B = \operatorname{diag}(t_1, t_2, \ldots, t_n)$ .

Then 
$$A + B = \text{diag}(s_1 + t_1, s_2 + t_2, \dots, s_n + t_n),$$
  
 $rA = \text{diag}(rs_1, rs_2, \dots, rs_n).$   
 $AB = \text{diag}(s_1t_1, s_2t_2, \dots, s_nt_n).$ 

In particular, diagonal matrices always commute (i.e., AB = BA).

Example.

$$\begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 7a_{11} & 7a_{12} & 7a_{13} \\ a_{21} & a_{22} & a_{23} \\ 2a_{31} & 2a_{32} & 2a_{33} \end{pmatrix}$$

**Theorem** Let  $D = \text{diag}(d_1, d_2, \ldots, d_m)$  and A be an  $m \times n$  matrix. Then the matrix DA is obtained from A by multiplying the *i*th row by  $d_i$  for  $i = 1, 2, \ldots, m$ :

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{pmatrix} \implies DA = \begin{pmatrix} d_1 \mathbf{v}_1 \\ d_2 \mathbf{v}_2 \\ \vdots \\ d_m \mathbf{v}_m \end{pmatrix}$$

Example.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 7a_{11} & a_{12} & 2a_{13} \\ 7a_{21} & a_{22} & 2a_{23} \\ 7a_{31} & a_{32} & 2a_{33} \end{pmatrix}$$

**Theorem** Let  $D = \text{diag}(d_1, d_2, \ldots, d_n)$  and A be an  $m \times n$  matrix. Then the matrix AD is obtained from A by multiplying the *i*th column by  $d_i$  for  $i = 1, 2, \ldots, n$ :

$$A = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n)$$
  
$$\implies AD = (d_1 \mathbf{w}_1, d_2 \mathbf{w}_2, \dots, d_n \mathbf{w}_n)$$

## **Identity matrix**

Definition. The **identity matrix** (or **unit matrix**) is a diagonal matrix with all diagonal entries equal to 1. The  $n \times n$  identity matrix is denoted  $I_n$  or simply I.

$$I_1 = (1), \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
In general,  $I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$ 

**Theorem.** Let A be an arbitrary  $m \times n$  matrix. Then  $I_m A = A I_n = A$ .

#### **Inverse matrix**

Let  $\mathcal{M}_n(\mathbb{R})$  denote the set of all  $n \times n$  matrices with real entries. We can **add**, **subtract**, and **multiply** elements of  $\mathcal{M}_n(\mathbb{R})$ . What about **division**?

Definition. Let  $A \in \mathcal{M}_n(\mathbb{R})$ . Suppose there exists an  $n \times n$  matrix B such that

$$AB = BA = I_n.$$

Then the matrix A is called **invertible** and B is called the **inverse** of A (denoted  $A^{-1}$ ).

A non-invertible square matrix is called **singular**.

$$AA^{-1} = A^{-1}A = I$$

# Examples

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$BA = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

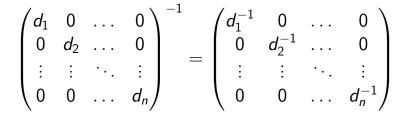
$$C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
Thus  $A^{-1} = B, \quad B^{-1} = A, \text{ and } C^{-1} = C.$ 

Basic properties of inverse matrices

• If  $B = A^{-1}$  then  $A = B^{-1}$ . In other words, if A is invertible, so is  $A^{-1}$ , and  $A = (A^{-1})^{-1}$ .

• The inverse matrix (if it exists) is unique. Moreover, if AB = CA = I for some  $n \times n$  matrices B and C, then  $B = C = A^{-1}$ .

Indeed, B = IB = (CA)B = C(AB) = CI = C.


• If  $n \times n$  matrices A and B are invertible, so is AB, and  $(AB)^{-1} = B^{-1}A^{-1}$ .

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I,$$
  
 $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$ 

• Similarly,  $(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}.$ 

### Inverting diagonal matrices

**Theorem** A diagonal matrix  $D = \text{diag}(d_1, \ldots, d_n)$ is invertible if and only if all diagonal entries are nonzero:  $d_i \neq 0$  for  $1 \leq i \leq n$ . If D is invertible then  $D^{-1} = \text{diag}(d_1^{-1}, \ldots, d_n^{-1})$ .



### Inverting diagonal matrices

**Theorem** A diagonal matrix  $D = \text{diag}(d_1, \ldots, d_n)$  is invertible if and only if all diagonal entries are nonzero:  $d_i \neq 0$  for  $1 \leq i \leq n$ .

If D is invertible then  $D^{-1} = \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1})$ .

*Proof:* If all  $d_i \neq 0$  then, clearly,  $\operatorname{diag}(d_1, \ldots, d_n) \operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) = \operatorname{diag}(1, \ldots, 1) = I$ ,  $\operatorname{diag}(d_1^{-1}, \ldots, d_n^{-1}) \operatorname{diag}(d_1, \ldots, d_n) = \operatorname{diag}(1, \ldots, 1) = I$ . Now suppose that  $d_i = 0$  for some *i*. Then for any  $n \times n$  matrix *B* the *i*th row of the matrix *DB* is a zero row. Hence  $DB \neq I$  as *I* has no zero rows.