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Topics in Applied Mathematics I

Lecture 7:
Inverse matrix (continued).



Inverse matrix

Definition. Let A be an n×n matrix. The inverse
of A is an n×n matrix, denoted A−1, such that

AA−1 = A−1A = I .

If A−1 exists then the matrix A is called invertible.

Otherwise A is called singular.



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n
).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...

0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is detA = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if detA 6= 0.

If detA 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if detA 6= 0. If detA 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0
0 ad−bc

)

= (ad − bc)I2.

In the case detA 6= 0, we have A−1 = (detA)−1B .
In the case detA = 0, the matrix A is not invertible as
otherwise AB = O =⇒ A−1(AB) = A−1O = O

=⇒ (A−1A)B = O =⇒ I2B = O =⇒ B = O

=⇒ A = O, but the zero matrix is singular.



Problem. Solve a system

{

4x + 3y = 5,
3x + 2y = −1.

This system is equivalent to a matrix equation Ax = b,

where A =

(

4 3
3 2

)

, x =

(

x

y

)

, b =

(

5
−1

)

.

We have detA = − 1 6= 0. Hence A is invertible.

Ax = b =⇒ A−1(Ax) = A−1b =⇒ (A−1A)x = A−1b
=⇒ x = A−1b.

Conversely, x = A−1b =⇒ Ax = A(A−1b) = (AA−1)b = b.

(

x

y

)

=

(

4 3
3 2

)

−1(

5
−1

)

=
1

−1

(

2 −3
−3 4

)(

5
−1

)

=

(

−13
19

)



System of n linear equations in n variables:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
an1x1 + an2x2 + · · · + annxn = bn

⇐⇒ Ax = b,

where

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

an1 an2 . . . ann











, x =











x1
x2
...

xn











, b =











b1
b2
...

bn











.

Theorem If the matrix A is invertible then the
system has a unique solution, which is x = A−1b.



General results on inverse matrices

Theorem 1 Given an n×n matrix A, the following
conditions are equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0;
(iii) the matrix equation Ax = b has a unique solution for
any n-dimensional column vector b;
(iv) the row echelon form of A has no zero rows;
(v) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix.
Then the same sequence of operations converts the identity

matrix into the inverse matrix A−1.



Row echelon form of a square matrix:






























∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case

For any matrix in row echelon form, the number of columns
with leading entries equals the number of rows with leading
entries. For a square matrix, also the number of columns
without leading entries (i.e., the number of free variables in a
related system of linear equations) equals the number of rows
without leading entries (i.e., zero rows).



Row echelon form of a square matrix:






























∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case

Hence the row echelon form of a square matrix A is either
strict triangular or else it has a zero row. In the former case,
the equation Ax = b always has a unique solution. In the
latter case, Ax = b never has a unique solution. Also, in the
former case the reduced row echelon form of A is I .



Example. A =





3 −2 0
1 0 1

−2 3 0



.

To check whether A is invertible, we convert it to row echelon

form.

Interchange the 1st row with the 2nd row:




1 0 1
3 −2 0

−2 3 0





Add −3 times the 1st row to the 2nd row:




1 0 1

0 −2 −3
−2 3 0







Add 2 times the 1st row to the 3rd row:




1 0 1

0 −2 −3
0 3 2





Multiply the 2nd row by −0.5:




1 0 1
0 1 1.5

0 3 2





Add −3 times the 2nd row to the 3rd row:




1 0 1

0 1 1.5
0 0 −2.5







Multiply the 3rd row by −0.4:




1 0 1

0 1 1.5

0 0 1





We already know that the matrix A is invertible.

Let’s proceed towards reduced row echelon form.

Add −1.5 times the 3rd row to the 2nd row:




1 0 1

0 1 0
0 0 1





Add −1 times the 3rd row to the 1st row:




1 0 0
0 1 0

0 0 1







To obtain A−1, we need to apply the following
sequence of elementary row operations to the

identity matrix:

• interchange the 1st row with the 2nd row,
• add −3 times the 1st row to the 2nd row,

• add 2 times the 1st row to the 3rd row,
• multiply the 2nd row by −0.5,

• add −3 times the 2nd row to the 3rd row,
• multiply the 3rd row by −0.4,

• add −1.5 times the 3rd row to the 2nd row,
• add −1 times the 3rd row to the 1st row.



A convenient way to compute the inverse matrix
A−1 is to merge the matrices A and I into one 3×6

matrix (A | I ), and apply elementary row operations
to this new matrix.

A =





3 −2 0
1 0 1

−2 3 0



, I =





1 0 0
0 1 0
0 0 1





(A | I ) =





3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1











3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1





Interchange the 1st row with the 2nd row:




1 0 1 0 1 0
3 −2 0 1 0 0

−2 3 0 0 0 1





Add −3 times the 1st row to the 2nd row:




1 0 1 0 1 0
0 −2 −3 1 −3 0

−2 3 0 0 0 1







Add 2 times the 1st row to the 3rd row:




1 0 1 0 1 0

0 −2 −3 1 −3 0
0 3 2 0 2 1





Multiply the 2nd row by −0.5:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0

0 3 2 0 2 1





Add −3 times the 2nd row to the 3rd row:




1 0 1 0 1 0

0 1 1.5 −0.5 1.5 0
0 0 −2.5 1.5 −2.5 1







Multiply the 3rd row by −0.4:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0

0 0 1 −0.6 1 −0.4





Add −1.5 times the 3rd row to the 2nd row:




1 0 1 0 1 0
0 1 0 0.4 0 0.6

0 0 1 −0.6 1 −0.4





Add −1 times the 3rd row to the 1st row:




1 0 0 0.6 0 0.4

0 1 0 0.4 0 0.6
0 0 1 −0.6 1 −0.4



 = (I |A−1)



Thus





3 −2 0
1 0 1

−2 3 0





−1

=







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






.

That is,




3 −2 0

1 0 1
−2 3 0











3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






=





1 0 0

0 1 0
0 0 1



,







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5











3 −2 0

1 0 1
−2 3 0



 =





1 0 0

0 1 0
0 0 1



.


