MATH 311
 Topics in Applied Mathematics I

Lecture 19:
 Examples of linear transformations. Range and kernel.
 General linear equations.

Linear transformation

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Basic properties of linear mappings:

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in V_{1} and V_{2}, respectively.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=(s r) \mathbf{x}=(r s) \mathbf{x}=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function $L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad D(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

More properties of linear mappings

- If a linear mapping $L: V \rightarrow W$ is invertible then the inverse mapping $L^{-1}: W \rightarrow V$ is also linear.
- If $L: V \rightarrow W$ and $M: W \rightarrow X$ are linear mappings then the composition $M \circ L: V \rightarrow X$ is also linear.
- If $L_{1}: V \rightarrow W$ and $L_{2}: V \rightarrow W$ are linear mappings then the sum $L_{1}+L_{2}$ is also linear.

Linear differential operators

- Ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where g_{0}, g_{1}, g_{2} are smooth functions on \mathbb{R}.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by ∇^{2}).

Linear integral operators

- Anti-derivative

$$
L: C[a, b] \rightarrow C^{1}[a, b], \quad(L f)(x)=\int_{a}^{x} f(y) d y
$$

- Hilbert-Schmidt operator
$L: C[a, b] \rightarrow C[c, d], \quad(L f)(x)=\int_{a}^{b} K(x, y) f(y) d y$, where $K \in C([c, d] \times[a, b])$.
- Laplace transform
$\mathcal{L}: B C(0, \infty) \rightarrow C(0, \infty), \quad(\mathcal{L} f)(x)=\int_{0}^{\infty} e^{-x y} f(y) d y$.

Examples. $\quad \mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices.

- $\alpha: \mathcal{M}_{m, n}(\mathbb{R}) \rightarrow \mathcal{M}_{n, m}(\mathbb{R}), \quad \alpha(A)=A^{T}$.
$\alpha(A+B)=\alpha(A)+\alpha(B) \Longleftrightarrow(A+B)^{T}=A^{T}+B^{T}$.
$\alpha(r A)=r \alpha(A) \Longleftrightarrow(r A)^{T}=r A^{T}$.
Hence α is linear.
- $\beta: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \beta(A)=\operatorname{det} A$.

Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
Then $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
We have $\operatorname{det}(A)=\operatorname{det}(B)=0$ while $\operatorname{det}(A+B)=1$. Hence $\beta(A+B) \neq \beta(A)+\beta(B)$ so that β is not linear.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of L is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w}=L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of L is denoted $L(V)$.
The kernel of L, denoted $\operatorname{ker} L$, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v})=\mathbf{0}$.

Theorem (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The kernel $\operatorname{ker}(L)$ is the nullspace of the matrix.

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)+z\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

The range $L\left(\mathbb{R}^{3}\right)$ is the column space of the matrix.

Example. $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
The range of L is spanned by vectors $(1,1,1),(0,2,0)$, and $(-1,-1,-1)$. It follows that $L\left(\mathbb{R}^{3}\right)$ is the plane spanned by $(1,1,1)$ and $(0,1,0)$.
To find $\operatorname{ker}(L)$, we apply row reduction to the matrix:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{ker}(L)$ if $x-z=y=0$.
It follows that $\operatorname{ker}(L)$ is the line spanned by $(1,0,1)$.

Example. $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(u)=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.
According to the theory of differential equations, the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=g(x), \quad x \in \mathbb{R}, \\
u(a)=b_{0}, \\
u^{\prime}(a)=b_{1}, \\
u^{\prime \prime}(a)=b_{2}
\end{array}\right.
$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_{0}, b_{1}, b_{2} \in \mathbb{R}$. It follows that $L\left(C^{3}(\mathbb{R})\right)=C(\mathbb{R})$.
Also, the initial data evaluation $I(u)=\left(u(a), u^{\prime}(a), u^{\prime \prime}(a)\right)$, which is a linear mapping $I: C^{3}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$, becomes invertible when restricted to $\operatorname{ker}(L)$. Hence $\operatorname{dim} \operatorname{ker}(L)=3$.
It is easy to check that $L\left(x e^{x}\right)=L\left(e^{x}\right)=L(1)=0$.
Besides, the functions $x e^{x}, e^{x}$, and 1 are linearly independent (use Wronskian). It follows that $\operatorname{ker}(L)=\operatorname{Span}\left(x e^{x}, e^{x}, 1\right)$.

General linear equation

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The kernel of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable and $\operatorname{dim} \operatorname{ker} L<\infty$, then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a basis for the kernel of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Example. $\left\{\begin{array}{l}x+y+z=4, \\ x+2 y=3 .\end{array}\right.$
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Linear equation: $L(\mathbf{x})=\mathbf{b}$, where $\mathbf{b}=\binom{4}{3}$.

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 1 & 1 & 4 \\
1 & 2 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 5 \\
0 & 1 & -1 & -1
\end{array}\right) \\
\left\{\begin{array} { l }
{ x + 2 z = 5 } \\
{ y - z = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5-2 z \\
y=-1+z
\end{array}\right.\right.
\end{gathered}
$$

$$
(x, y, z)=(5-2 t,-1+t, t)=(5,-1,0)+t(-2,1,1)
$$

Example. $u^{\prime \prime \prime}(x)-2 u^{\prime \prime}(x)+u^{\prime}(x)=e^{2 x}$.
Linear operator $L: C^{3}(\mathbb{R}) \rightarrow C(\mathbb{R})$,
$L u=u^{\prime \prime \prime}-2 u^{\prime \prime}+u^{\prime}$.
Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
We already know that functions $x e^{x}, e^{x}$ and 1 form a basis for the kernel of L. It remains to find a particular solution.
$L\left(e^{2 x}\right)=8 e^{2 x}-2\left(4 e^{2 x}\right)+2 e^{2 x}=2 e^{2 x}$.
Since L is a linear operator, $L\left(\frac{1}{2} e^{2 x}\right)=e^{2 x}$.
Particular solution: $u_{0}(x)=\frac{1}{2} e^{2 x}$.
Thus the general solution is

$$
u(x)=\frac{1}{2} e^{2 x}+t_{1} x e^{x}+t_{2} e^{x}+t_{3} .
$$

