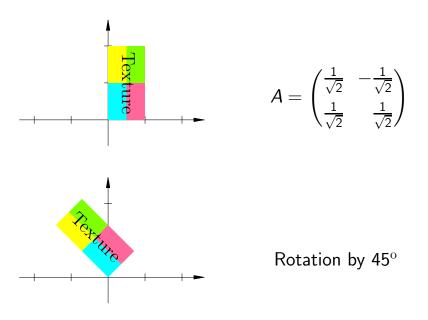
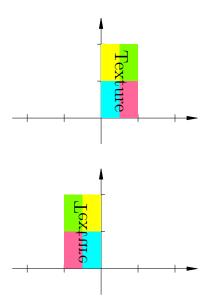
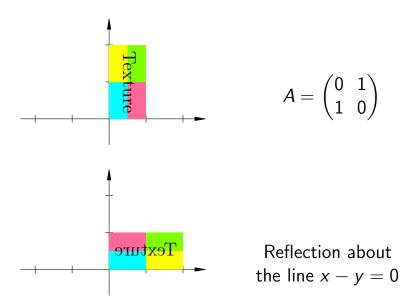

MATH 311 Topics in Applied Mathematics I Lecture 21b: Eigenvalues and eigenvectors. Characteristic equation.

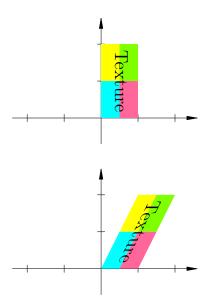

Linear transformations of \mathbb{R}^2


Any linear mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ is represented as multiplication of a 2-dimensional column vector by a 2×2 matrix: $f(\mathbf{x}) = A\mathbf{x}$ or

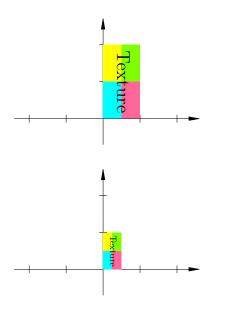
$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

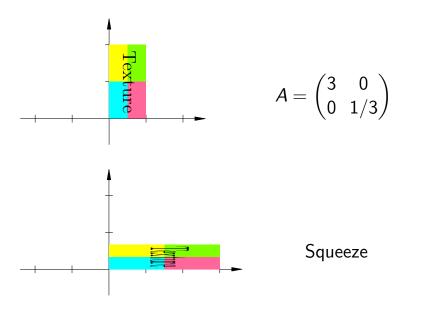
Linear transformations corresponding to particular matrices can have various geometric properties.

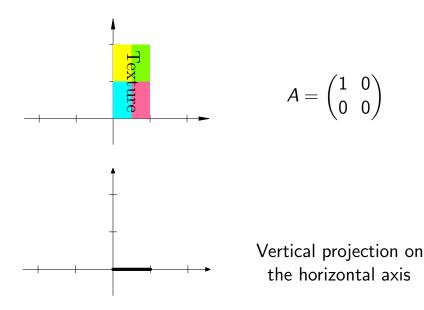


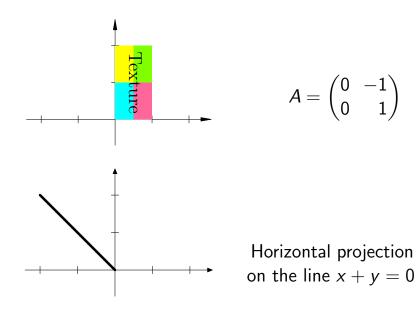


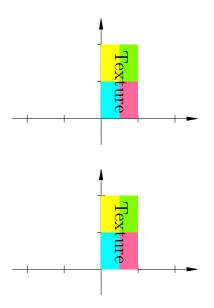
 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$


Reflection about the vertical axis


 $A = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$


Horizontal shear




 $A = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Identity

Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

Example.
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

Hence (1,0) is an eigenvector of A belonging to the eigenvalue 2, while (0,-2) is an eigenvector of A belonging to the eigenvalue 3.

Example.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Hence (1, 1) is an eigenvector of A belonging to the eigenvalue 1, while (1, -1) is an eigenvector of A belonging to the eigenvalue -1.

Vectors $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, -1)$ form a basis for \mathbb{R}^2 . Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L(\mathbf{x}) = A\mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$ is $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\mathbf{x}) = A\mathbf{x}$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix *B* is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of *A*. If this is the case, then the diagonal entries of the matrix *B* are the corresponding eigenvalues of *A*.

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \iff B = \begin{pmatrix} \lambda_{1} & & O \\ & \lambda_{2} & \\ & & \ddots & \\ O & & & \lambda_{n} \end{pmatrix}$$

Eigenspaces

Let A be an $n \times n$ matrix. Let **v** be an eigenvector of A belonging to an eigenvalue λ .

Then $A\mathbf{v} = \lambda \mathbf{v} \implies A\mathbf{v} = (\lambda I)\mathbf{v} \implies (A - \lambda I)\mathbf{v} = \mathbf{0}$. Hence $\mathbf{v} \in N(A - \lambda I)$, the nullspace of the matrix $A - \lambda I$.

Conversely, if $\mathbf{x} \in N(A - \lambda I)$ then $A\mathbf{x} = \lambda \mathbf{x}$. Thus the eigenvectors of A belonging to the eigenvalue λ are nonzero vectors from $N(A - \lambda I)$. *Definition.* If $N(A - \lambda I) \neq \{\mathbf{0}\}$ then it is called the **eigenspace** of the matrix A corresponding to the eigenvalue λ .

How to find eigenvalues and eigenvectors?

Theorem Given a square matrix A and a scalar λ , the following statements are equivalent:

- λ is an eigenvalue of A,
- $N(A \lambda I) \neq \{\mathbf{0}\},\$
- the matrix $A \lambda I$ is singular,

•
$$det(A - \lambda I) = 0.$$

Definition. $det(A - \lambda I) = 0$ is called the **characteristic equation** of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Example.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.
 $det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$ $= (a - \lambda)(d - \lambda) - bc$ $= \lambda^2 - (a + d)\lambda + (ad - bc)$.

Example.
$$A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

$$\det(A - \lambda I) = egin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \ a_{21} & a_{22} - \lambda & a_{23} \ a_{31} & a_{32} & a_{33} - \lambda \ = -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3, \end{cases}$$

where $c_1 = a_{11} + a_{22} + a_{33}$ (the *trace* of A), $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$, $c_3 = \det A$. **Theorem.** Let $A = (a_{ij})$ be an $n \times n$ matrix. Then $det(A - \lambda I)$ is a polynomial of λ of degree n: $det(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n$. Furthermore, $(-1)^{n-1}c_1 = a_{11} + a_{22} + \dots + a_{nn}$ and $c_n = det A$.

Definition. The polynomial $p(\lambda) = det(A - \lambda I)$ is called the **characteristic polynomial** of the matrix A.

Corollary Any $n \times n$ matrix has at most n eigenvalues.