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Lecture 24:

Euclidean structure in R
n.

Orthogonal complement.



Beyond linearity: Euclidean structure

The vector space R
n is also a Euclidean space.

The Euclidean structure includes:
• length of a vector: |x|,

• angle between vectors: θ,
• dot product: x · y = |x| |y| cos θ.
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Length and distance

Definition. The length of a vector

v = (v1, v2, . . . , vn) ∈ R
n is

‖v‖ =
√

v 2

1
+ v 2

2
+ · · ·+ v 2

n
.

The distance between vectors x and y is defined as
‖y − x‖.

Properties of length:

‖x‖ ≥ 0, ‖x‖ = 0 only if x = 0 (positivity)

‖rx‖ = |r | ‖x‖ (homogeneity)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)



Scalar product

Definition. The scalar product of vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Alternative notation: (x, y) or 〈x, y〉.

Properties of scalar product:

x · x ≥ 0, x · x = 0 only if x = 0 (positivity)

x · y = y · x (symmetry)
(x+ y) · z = x · z+ y · z (distributive law)

(rx) · y = r(x · y) (homogeneity)

In particular, x · y is a bilinear function (i.e., it is
both a linear function of x and a linear function of y).



Angle

Cauchy-Schwarz inequality: |x · y| ≤ ‖x‖ ‖y‖.

By the Cauchy-Schwarz inequality, for any nonzero
vectors x, y ∈ R

n we have

cos θ =
x · y

‖x‖ ‖y‖
for a unique 0 ≤ θ ≤ π.

θ is called the angle between the vectors x and y.

The vectors x and y are said to be orthogonal

(denoted x ⊥ y) if x · y = 0 (i.e., if θ = 90o).



Orthogonality

Definition 1. Vectors x, y ∈ R
n are said to be

orthogonal (denoted x ⊥ y) if x · y = 0.

Definition 2. A vector x ∈ R
n is said to be

orthogonal to a nonempty set Y ⊂ R
n (denoted

x ⊥ Y ) if x · y = 0 for any y ∈ Y .

Definition 3. Nonempty sets X ,Y ⊂ R
n are said

to be orthogonal (denoted X ⊥ Y ) if x · y = 0

for any x ∈ X and y ∈ Y .



Examples in R
3. • The line x = y = 0 is

orthogonal to the line y = z = 0.
Indeed, if v = (0, 0, z) and w = (x , 0, 0) then v · w = 0.

• The line x = y = 0 is orthogonal to the plane

z = 0.
Indeed, if v = (0, 0, z) and w = (x , y , 0) then v · w = 0.

• The line x = y = 0 is not orthogonal to the

plane z = 1.
The vector v = (0, 0, 1) belongs to both the line and the
plane, and v · v = 1 6= 0.

• The plane z = 0 is not orthogonal to the plane

y = 0.
The vector v = (1, 0, 0) belongs to both planes and
v · v = 1 6= 0.



Proposition 1 If X ,Y ∈ R
n are orthogonal sets

then either they are disjoint or X ∩ Y = {0}.

Proof: v ∈ X ∩ Y =⇒ v ⊥ v =⇒ v · v = 0 =⇒ v = 0.

Proposition 2 Let V be a subspace of Rn and S

be a spanning set for V . Then for any x ∈ R
n

x ⊥ S =⇒ x ⊥ V .

Proof: Any v ∈ V is represented as v = a1v1 + · · ·+ akvk ,
where vi ∈ S and ai ∈ R. If x ⊥ S then

x · v = a1(x · v1) + · · ·+ ak(x · vk) = 0 =⇒ x ⊥ v.

Example. The vector v = (1, 1, 1) is orthogonal to
the plane spanned by vectors w1 = (2,−3, 1) and

w2 = (0, 1,−1) (because v · w1 = v ·w2 = 0).



Orthogonal complement

Definition. Let S ⊂ R
n. The orthogonal

complement of S , denoted S⊥, is the set of all

vectors x ∈ R
n that are orthogonal to S . That is,

S⊥ is the largest subset of Rn orthogonal to S .

Theorem 1 S⊥ is a subspace of Rn.

Note that S ⊂ (S⊥)⊥, hence Span(S) ⊂ (S⊥)⊥.

Theorem 2 (S⊥)⊥ = Span(S). In particular, for
any subspace V we have (V⊥)⊥ = V .

Example. Consider a line L = {(x , 0, 0) | x ∈ R}

and a plane Π = {(0, y , z) | y , z ∈ R} in R
3.

Then L⊥ = Π and Π⊥ = L.
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Fundamental subspaces

Definition. Given an m×n matrix A, let

N(A) = {x ∈ R
n | Ax = 0},

R(A) = {b ∈ R
m | b = Ax for some x ∈ R

n}.

R(A) is the range of a linear mapping L : Rn → R
m,

L(x) = Ax. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while
R(A) is the column space of A. The row space of

A is R(AT ).

The subspaces N(A),R(AT) ⊂ R
n and

R(A),N(AT ) ⊂ R
m are fundamental subspaces

associated to the matrix A.



Theorem N(A) = R(AT )⊥, N(AT ) = R(A)⊥.
That is, the nullspace of a matrix is the orthogonal

complement of its row space.

Proof: The equality Ax = 0 means that the vector x is
orthogonal to rows of the matrix A. Therefore N(A) = S⊥,
where S is the set of rows of A. It remains to note that
S⊥ = Span(S)⊥ = R(AT )⊥.

Corollary Let V be a subspace of Rn. Then

dimV + dimV⊥ = n.

Proof: Pick a basis v1, . . . , vk for V . Let A be the k×n

matrix whose rows are vectors v1, . . . , vk . Then V = R(AT ),
hence V⊥ = N(A). Consequently, dimV and dimV⊥ are
rank and nullity of A. Therefore dimV + dimV⊥ equals the
number of columns of A, which is n.



Problem. Let V be the plane spanned by vectors

v1 = (1, 1, 0) and v2 = (0, 1, 1). Find V⊥.

The orthogonal complement to V is the same as the
orthogonal complement of the set {v1, v2}. A vector
u = (x , y , z) belongs to the latter if and only if

{

u · v1 = 0
u · v2 = 0

⇐⇒

{

x + y = 0
y + z = 0

Alternatively, the subspace V is the row space of the matrix

A =

(

1 1 0
0 1 1

)

,

hence V⊥ is the nullspace of A.

The general solution of the system (or, equivalently, the
general element of the nullspace of A) is (t,−t, t)
= t(1,−1, 1), t ∈ R. Thus V⊥ is the straight line spanned
by the vector (1,−1, 1).


