## MATH 311 <br> Topics in Applied Mathematics I <br> Lecture 27: <br> Review for Test 2.

## Topics for Test 2

Vector spaces (Leon/Colley 3.4-3.6)

- Basis and dimension
- Rank and nullity of a matrix
- Coordinates relative to a basis
- Change of basis, transition matrix

Linear transformations (Leon/Colley 4.1-4.3)

- Linear transformations
- Range and kernel
- Matrix transformations
- Matrix of a linear transformation
- Change of basis for a linear operator
- Similar matrices


## Topics for Test 2

Eigenvalues and eigenvectors (Leon/Colley 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization

Orthogonality (Leon/Colley 5.1-5.3, 5.5-5.6)

- Orthogonal complement
- Orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process


## Sample problems for Test 2

Problem 1 Let $A=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix $A$.
(ii) Find a basis for the row space of $A$, then extend this basis to a basis for $\mathbb{R}^{4}$.
(iii) Find a basis for the nullspace of $A$.

Problem 2 Let $A$ and $B$ be two matrices such that the product $A B$ is well defined.
(i) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(ii) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.

## Sample problems for Test 2

Problem 3 Let $V$ be a subspace of $F(\mathbb{R})$ spanned by functions $e^{x}$ and $e^{-x}$. Let $L$ be a linear operator on $V$ such that $\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$ is the matrix of $L$ relative to the basis $e^{x}$,
$e^{-x}$. Find the matrix of $L$ relative to the basis $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

Problem 4 Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix $A$.
(ii) For each eigenvalue of $A$, find an associated eigenvector.
(iii) Is the matrix $A$ diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix $A^{2}$.

## Sample problems for Test 2

Problem 5 Find a linear polynomial which is the best least squares fit to the following data:

| $x$ | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -3 | -2 | 1 | 2 | 5 |

Problem 6 Let $V$ be a subspace of $\mathbb{R}^{4}$ spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for $V$.
(ii) Find an orthonormal basis for the orthogonal complement $V^{\perp}$.
(iii) Find the distance from the vector $\mathbf{y}=(1,0,0,0)$ to the subspaces $V$ and $V^{\perp}$.

Problem 1. Let $A=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$
(i) Find the rank and the nullity of the matrix $A$.

The rank (= dimension of the row space) and the nullity (= dimension of the nullspace) of a matrix are preserved under elementary row operations. We apply such operations to convert the matrix $A$ into row echelon form.

Interchange the 1st row with the 2 nd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$

Add 3 times the 1 st row to the 3 rd row, then subtract 2 times the 1st row from the 4th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 2 & -1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Multiply the 2 nd row by -1 :
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 3 & 5 & -3 \\ 0 & -3 & -4 & 3\end{array}\right)$
Add the 4th row to the 3rd row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -3 & -4 & 3\end{array}\right)$

Add 3 times the 2 nd row to the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -16 & 0\end{array}\right)$
Add 16 times the 3 rd row to the 4 th row:
$\rightarrow\left(\begin{array}{rrrr}1 & 1 & 2 & -1 \\ 0 & 1 & -4 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
Now that the matrix is in row echelon form, its rank equals the number of nonzero rows, which is 3 . Since
$($ rank of $A)+($ nullity of $A)=($ the number of columns of $A)=4$, it follows that the nullity of $A$ equals 1 .

Problem 1. Let $A=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(ii) Find a basis for the row space of $A$, then extend this basis to a basis for $\mathbb{R}^{4}$.

The row space of a matrix is invariant under elementary row operations. Therefore the row space of the matrix $A$ is the same as the row space of its row echelon form:

$$
\left(\begin{array}{rrrr}
0 & -1 & 4 & 1 \\
1 & 1 & 2 & -1 \\
-3 & 0 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of the latter matrix are linearly independent so that they form a basis for its row space:

$$
\mathbf{v}_{1}=(1,1,2,-1), \quad \mathbf{v}_{2}=(0,1,-4,-1), \quad \mathbf{v}_{3}=(0,0,1,0)
$$

To extend the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to a basis for $\mathbb{R}^{4}$, we need a vector $\mathbf{v}_{4} \in \mathbb{R}^{4}$ that is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

It is known that at least one of the vectors $\mathbf{e}_{1}=(1,0,0,0)$, $\mathbf{e}_{2}=(0,1,0,0), \mathbf{e}_{3}=(0,0,1,0)$, and $\mathbf{e}_{4}=(0,0,0,1)$ can be chosen as $\mathbf{v}_{4}$.

In particular, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{4}$ form a basis for $\mathbb{R}^{4}$. This follows from the fact that the $4 \times 4$ matrix whose rows are these vectors is not singular:

$$
\left|\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1 \neq 0
$$

Problem 1. Let $A=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(iii) Find a basis for the nullspace of $A$.

The nullspace of $A$ is the solution set of the system of linear homogeneous equations with $A$ as the coefficient matrix. To solve the system, we convert $A$ to reduced row echelon form:

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{rrrr}
1 & 1 & 2 & -1 \\
0 & 1 & -4 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \Longrightarrow x_{1}=x_{2}-x_{4}=x_{3}=0
\end{aligned}
$$

General solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0, t, 0, t)=t(0,1,0,1)$.
Thus the vector $(0,1,0,1)$ forms a basis for the nullspace of $A$.

Problem 2. Let $A$ and $B$ be two matrices such that the product $A B$ is well defined.
(i) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

Suppose that $B \mathbf{x}=\mathbf{0}$ for some column vector $\mathbf{x}$. Then $(A B) \mathbf{x}=A(B \mathbf{x})=A \mathbf{0}=\mathbf{0}$. It follows that the nullspace of $B$ is contained in the nullspace of $A B$. Consequently, nullity $(B) \leq \operatorname{nullity}(A B)$. Since matrices $A B$ and $B$ have the same number of columns, we obtain $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(ii) Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.

Note that $\operatorname{rank}(M)=\operatorname{rank}\left(M^{T}\right)$ for any matrix $M$. In particular, $\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{T}\right)=\operatorname{rank}\left(B^{T} A^{T}\right)$. By the above, $\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$.

Remark. Alternatively, one can show that the row space of $A B$ is contained in the row space of $B$ while the column space of $A B$ is contained in the column space of $A$.

Problem 3. Let $V$ be a subspace of $F(\mathbb{R})$ spanned by functions $e^{x}$ and $e^{-x}$. Let $L$ be a linear operator on $V$ such that $\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$ is the matrix of $L$ relative to the basis $e^{x}$,
$e^{-x}$. Find the matrix of $L$ relative to the basis $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.

Let $A$ denote the matrix of the operator $L$ relative to the basis $e^{x}, e^{-x}$ (which is given) and $B$ denote the matrix of $L$ relative to the basis $\cosh x, \sinh x$ (which is to be found). By definition of the functions $\cosh x$ and $\sinh x$, the transition matrix from $\cosh x, \sinh x$ to $e^{x}, e^{-x}$ is $U=\frac{1}{2}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$. It follows that $B=U^{-1} A U$. We obtain that

$$
B=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right) \cdot \frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 4
\end{array}\right) .
$$

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix $A$.

The eigenvalues of $A$ are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$. We obtain that

$$
\begin{aligned}
& \operatorname{det}(A-\lambda /)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda)=(1-\lambda)\left((1-\lambda)^{2}-4\right) \\
& =(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{aligned}
$$

Hence the matrix $A$ has three eigenvalues: $-1,1$, and 3 .

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(ii) For each eigenvalue of $A$, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of the matrix $A$ associated with an eigenvalue $\lambda$ is a nonzero solution of the vector equation

$$
(A-\lambda /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve the equation, we convert the matrix $A-\lambda I$ to reduced row echelon form.

First consider the case $\lambda=-1$. The row reduction yields

$$
\begin{gathered}
A+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \\
\rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A+I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of $A$ associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields
$A-I=\left(\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Hence

$$
(A-I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of $A$ associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{gathered}
A-3 \left\lvert\,=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right)\right. \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Hence

$$
(A-3 I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of $A$ associated with the eigenvalue 3 .

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iii) Is the matrix $A$ diagonalizable? Explain.

The matrix $A$ is diagonalizable, i.e., there exists a basis for $\mathbb{R}^{3}$ formed by its eigenvectors.
Namely, the vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix $A$ belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for $\mathbb{R}^{3}$.
Alternatively, the existence of a basis for $\mathbb{R}^{3}$ consisting of eigenvectors of $A$ already follows from the fact that the matrix $A$ has three distinct eigenvalues.

Problem 4. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iv) Find all eigenvalues of the matrix $A^{2}$.

Suppose that $\mathbf{v}$ is an eigenvector of the matrix $A$ associated with an eigenvalue $\lambda$, that is, $\mathbf{v} \neq \mathbf{0}$ and $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda(A \mathbf{v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}
$$

Therefore $\mathbf{v}$ is also an eigenvector of the matrix $A^{2}$ and the associated eigenvalue is $\lambda^{2}$. We already know that the matrix $A$ has eigenvalues $-1,1$, and 3 . It follows that $A^{2}$ has eigenvalues 1 and 9 .

Since a $3 \times 3$ matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of $A^{2}$. One reason is that the eigenvalue 1 has multiplicity 2.

Problem 5. Find a linear polynomial which is the best least squares fit to the following data:

$$
\begin{array}{c||c|c|c|c|c}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & -3 & -2 & 1 & 2 & 5
\end{array}
$$

We are looking for a function $f(x)=c_{1}+c_{2} x$, where $c_{1}, c_{2}$ are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables $c_{1}$ and $c_{2}$ :

$$
\left\{\begin{array}{l}
c_{1}-2 c_{2}=-3 \\
c_{1}-c_{2}=-2 \\
c_{1}=1 \\
c_{1}+c_{2}=2 \\
c_{1}+2 c_{2}=5
\end{array}\right.
$$

This system is inconsistent.

We can represent the system as a matrix equation $A c=y$, where

$$
A=\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right), \quad \mathbf{c}=\binom{c_{1}}{c_{2}}, \quad \mathbf{y}=\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right)
$$

The least squares solution $\mathbf{c}$ of the above system is a solution of the normal system $A^{T} A \mathbf{c}=A^{T} \mathbf{y}$ :

$$
\begin{gathered}
\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
2 \\
5
\end{array}\right) \\
\\
\Longleftrightarrow\left(\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{3}{20} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
c_{1}=3 / 5 \\
c_{2}=2
\end{array}\right.
\end{gathered}
$$

Thus the function $f(x)=\frac{3}{5}+2 x$ is the best least squares fit to the above data among linear polynomials.

I

Problem 6. Let $V$ be a subspace of $\mathbb{R}^{4}$ spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for $V$.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ for the subspace $V$ :
$\mathbf{v}_{1}=\mathbf{x}_{1}=(1,1,1,1)$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=(1,0,3,0)-\frac{4}{4}(1,1,1,1)=(0,-1,2,-1)$.
Then we normalize vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ to obtain an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for $V$ :

$$
\begin{aligned}
& \left\|\mathbf{v}_{1}\right\|=2 \quad \Longrightarrow \quad \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2}(1,1,1,1) \\
& \left\|\mathbf{v}_{2}\right\|=\sqrt{6} \quad \Longrightarrow \quad \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{6}}(0,-1,2,-1)
\end{aligned}
$$

Problem 6. Let $V$ be a subspace of $\mathbb{R}^{4}$ spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(ii) Find an orthonormal basis for the orthogonal complement $V^{\perp}$.

Since the subspace $V$ is spanned by vectors $(1,1,1,1)$ and $(1,0,3,0)$, it is the row space of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right) .
$$

Then the orthogonal complement $V^{\perp}$ is the nullspace of $A$.
To find the nullspace, we convert the matrix $A$ to reduced row echelon form:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1
\end{array}\right) .
$$

Hence a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ belongs to $V^{\perp}$ if and only if

$$
\begin{gathered}
\left(\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{0}{0} \\
\Longleftrightarrow\left\{\begin{array} { l } 
{ x _ { 1 } + 3 x _ { 3 } = 0 } \\
{ x _ { 2 } - 2 x _ { 3 } + x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=-3 x_{3} \\
x_{2}=2 x_{3}-x_{4}
\end{array}\right.\right.
\end{gathered}
$$

The general solution of the system is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $=(-3 t, 2 t-s, t, s)=t(-3,2,1,0)+s(0,-1,0,1)$, where $t, s \in \mathbb{R}$.

It follows that $V^{\perp}$ is spanned by vectors $\mathbf{x}_{3}=(0,-1,0,1)$ and $\mathbf{x}_{4}=(-3,2,1,0)$.

The vectors $\mathbf{x}_{3}=(0,-1,0,1)$ and $\mathbf{x}_{4}=(-3,2,1,0)$ form a basis for the subspace $V^{\perp}$.
It remains to orthogonalize and normalize this basis:
$\mathbf{v}_{3}=\mathbf{x}_{3}=(0,-1,0,1)$,
$\mathbf{v}_{4}=\mathbf{x}_{4}-\frac{\mathbf{x}_{4} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}=(-3,2,1,0)-\frac{-2}{2}(0,-1,0,1)$
$=(-3,1,1,1)$,
$\left\|\mathbf{v}_{3}\right\|=\sqrt{2} \quad \Longrightarrow \quad \mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\frac{1}{\sqrt{2}}(0,-1,0,1)$,
$\left\|\mathbf{v}_{4}\right\|=\sqrt{12}=2 \sqrt{3} \Longrightarrow \mathbf{w}_{4}=\frac{\mathbf{v}_{4}}{\left\|\mathbf{v}_{4}\right\|}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)$.
Thus the vectors $\mathbf{w}_{3}=\frac{1}{\sqrt{2}}(0,-1,0,1)$ and $\mathbf{w}_{4}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)$ form an orthonormal basis for $V^{\perp}$.

Problem 6. Let $V$ be a subspace of $\mathbb{R}^{4}$ spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(iii) Find the distance from the vector $\mathbf{y}=(1,0,0,0)$ to the subspaces $V$ and $V^{\perp}$.

For any vector $\mathbf{y} \in \mathbb{R}^{4}$ the orthogonal projection of $\mathbf{y}$ onto the subspace $V$ is $\mathbf{p}=\left(\mathbf{y} \cdot \mathbf{w}_{1}\right) \mathbf{w}_{1}+\left(\mathbf{y} \cdot \mathbf{w}_{2}\right) \mathbf{w}_{2}$ and the orthogonal projection of $\mathbf{y}$ onto $V^{\perp}$ is
$\mathbf{o}=\left(\mathbf{y} \cdot \mathbf{w}_{3}\right) \mathbf{w}_{3}+\left(\mathbf{y} \cdot \mathbf{w}_{4}\right) \mathbf{w}_{4}$.
Then the distance from $\mathbf{y}$ to $V$ is $\|\mathbf{y}-\mathbf{p}\|=\|\mathbf{o}\|$ and the distance from $\mathbf{y}$ to $V^{\perp}$ is $\|\mathbf{y}-\mathbf{o}\|=\|\mathbf{p}\|$.

In the case $\mathbf{y}=(1,0,0,0)$, we obtain

$$
\begin{aligned}
& \mathbf{p}=\frac{1}{2} \cdot \frac{1}{2}(1,1,1,1)=\frac{1}{4}(1,1,1,1), \\
& \mathbf{o}=\frac{-3}{2 \sqrt{3}} \cdot \frac{1}{2 \sqrt{3}}(-3,1,1,1)=\frac{1}{4}(3,-1,-1,-1) .
\end{aligned}
$$

Hence $\|\mathbf{o}\|=\frac{\sqrt{3}}{2}$ and $\|\mathbf{p}\|=\frac{1}{2}$.

Problem 6. Let $V$ be a subspace of $\mathbb{R}^{4}$ spanned by the vectors $\mathbf{x}_{1}=(1,1,1,1)$ and $\mathbf{x}_{2}=(1,0,3,0)$.
(i) Find an orthonormal basis for $V$.
(ii) Find an orthonormal basis for the orthogonal complement $V^{\perp}$.

Alternative solution: First we extend the set $\mathbf{x}_{1}, \mathbf{x}_{2}$ to a basis $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ for $\mathbb{R}^{4}$. Then we orthogonalize and normalize the latter. This yields an orthonormal basis $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$ for $\mathbb{R}^{4}$.

By construction, $\mathbf{w}_{1}, \mathbf{w}_{2}$ is an orthonormal basis for $V$. It follows that $\mathbf{w}_{3}, \mathbf{w}_{4}$ is an orthonormal basis for $V^{\perp}$.

The set $\mathbf{x}_{1}=(1,1,1,1), \mathbf{x}_{2}=(1,0,3,0)$ can be extended to a basis for $\mathbb{R}^{4}$ by adding two vectors from the standard basis.
For example, we can add vectors $\mathbf{e}_{3}=(0,0,1,0)$ and $\mathbf{e}_{4}=(0,0,0,1)$. To show that $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ is indeed a basis for $\mathbb{R}^{4}$, we check that the matrix whose rows are these vectors is nonsingular:

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=-\left|\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=-1 \neq 0 .
$$

To orthogonalize the basis $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$, we apply the Gram-Schmidt process:

$$
\begin{aligned}
& \mathbf{v}_{1}= \mathbf{x}_{1}=(1,1,1,1), \\
& \mathbf{v}_{2}= \mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=(1,0,3,0)-\frac{4}{4}(1,1,1,1)=(0,-1,2,-1), \\
& \mathbf{v}_{3}= \mathbf{e}_{3}-\frac{\mathbf{e}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{e}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}=(0,0,1,0)-\frac{1}{4}(1,1,1,1)- \\
&-\frac{2}{6}(0,-1,2,-1)=\left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}\right)=\frac{1}{12}(-3,1,1,1), \\
& \mathbf{v}_{4}= \mathbf{e}_{4}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\frac{\mathbf{e}_{4} \cdot \mathbf{v}_{3}}{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} \mathbf{v}_{3}=(0,0,0,1)- \\
&-\frac{1}{4}(1,1,1,1)-\frac{-1}{6}(0,-1,2,-1)-\frac{1 / 12}{1 / 12} \cdot \frac{1}{12}(-3,1,1,1)= \\
& \quad=\left(0,-\frac{1}{2}, 0, \frac{1}{2}\right)=\frac{1}{2}(0,-1,0,1) .
\end{aligned}
$$

It remains to normalize vectors $\mathbf{v}_{1}=(1,1,1,1)$,
$\mathbf{v}_{2}=(0,-1,2,-1), \mathbf{v}_{3}=\frac{1}{12}(-3,1,1,1), \mathbf{v}_{4}=\frac{1}{2}(0,-1,0,1)$ :
$\left\|\mathbf{v}_{1}\right\|=2 \quad \Longrightarrow \quad \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2}(1,1,1,1)$
$\left\|\mathbf{v}_{2}\right\|=\sqrt{6} \Longrightarrow \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{6}}(0,-1,2,-1)$

$$
\left\|\mathbf{v}_{3}\right\|=\frac{1}{\sqrt{12}}=\frac{1}{2 \sqrt{3}} \quad \Longrightarrow \quad \mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)
$$

$$
\left\|\mathbf{v}_{4}\right\|=\frac{1}{\sqrt{2}} \Longrightarrow \mathbf{w}_{4}=\frac{\mathbf{v}_{4}}{\left\|\mathbf{v}_{4}\right\|}=\frac{1}{\sqrt{2}}(0,-1,0,1)
$$

Thus $\mathbf{w}_{1}, \mathbf{w}_{2}$ is an orthonormal basis for $V$ while $\mathbf{w}_{3}, \mathbf{w}_{4}$ is an orthonormal basis for $V^{\perp}$.

