
MATH 311

Topics in Applied Mathematics I

Lecture 27:
Review for Test 2.



Topics for Test 2

Vector spaces (Leon/Colley 3.4–3.6)

• Basis and dimension

• Rank and nullity of a matrix
• Coordinates relative to a basis
• Change of basis, transition matrix

Linear transformations (Leon/Colley 4.1–4.3)

• Linear transformations
• Range and kernel

• Matrix transformations
• Matrix of a linear transformation

• Change of basis for a linear operator
• Similar matrices



Topics for Test 2

Eigenvalues and eigenvectors (Leon/Colley 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Diagonalization

Orthogonality (Leon/Colley 5.1–5.3, 5.5–5.6)

• Orthogonal complement
• Orthogonal projection

• Least squares problems
• The Gram-Schmidt orthogonalization process



Sample problems for Test 2

Problem 1 Let A =









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









.

(i) Find the rank and the nullity of the matrix A.
(ii) Find a basis for the row space of A, then extend this basis
to a basis for R4.
(iii) Find a basis for the nullspace of A.

Problem 2 Let A and B be two matrices such that the
product AB is well defined.

(i) Prove that rank(AB) ≤ rank(B).
(ii) Prove that rank(AB) ≤ rank(A).



Sample problems for Test 2

Problem 3 Let V be a subspace of F (R) spanned by
functions ex and e−x . Let L be a linear operator on V such

that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex ,

e−x . Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Problem 4 Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A2.



Sample problems for Test 2

Problem 5 Find a linear polynomial which is the best least
squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

Problem 6 Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .
(ii) Find an orthonormal basis for the orthogonal complement
V⊥.
(iii) Find the distance from the vector y = (1, 0, 0, 0) to the
subspaces V and V⊥.



Problem 1. Let A =









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









.

(i) Find the rank and the nullity of the matrix A.

The rank (= dimension of the row space) and the nullity
(= dimension of the nullspace) of a matrix are preserved under
elementary row operations. We apply such operations to
convert the matrix A into row echelon form.

Interchange the 1st row with the 2nd row:

→









1 1 2 −1
0 −1 4 1

−3 0 −1 0
2 −1 0 1











Add 3 times the 1st row to the 3rd row, then subtract 2 times
the 1st row from the 4th row:

→









1 1 2 −1
0 −1 4 1
0 3 5 −3
2 −1 0 1









→









1 1 2 −1
0 −1 4 1
0 3 5 −3
0 −3 −4 3









Multiply the 2nd row by −1:

→









1 1 2 −1
0 1 −4 −1
0 3 5 −3
0 −3 −4 3









Add the 4th row to the 3rd row:

→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 −3 −4 3











Add 3 times the 2nd row to the 4th row:

→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 −16 0









Add 16 times the 3rd row to the 4th row:

→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









Now that the matrix is in row echelon form, its rank equals the
number of nonzero rows, which is 3. Since

(rank of A) + (nullity of A) = (the number of columns of A) = 4,

it follows that the nullity of A equals 1.



Problem 1. Let A =









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









.

(ii) Find a basis for the row space of A, then extend this basis
to a basis for R4.

The row space of a matrix is invariant under elementary row
operations. Therefore the row space of the matrix A is the
same as the row space of its row echelon form:









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









.

The nonzero rows of the latter matrix are linearly independent
so that they form a basis for its row space:



v1 = (1, 1, 2,−1), v2 = (0, 1,−4,−1), v3 = (0, 0, 1, 0).

To extend the basis v1, v2, v3 to a basis for R4, we need a
vector v4 ∈ R

4 that is not a linear combination of v1, v2, v3.

It is known that at least one of the vectors e1 = (1, 0, 0, 0),
e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1) can be
chosen as v4.

In particular, the vectors v1, v2, v3, e4 form a basis for R4.
This follows from the fact that the 4× 4 matrix whose rows
are these vectors is not singular:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1 6= 0.



Problem 1. Let A =









0 −1 4 1
1 1 2 −1

−3 0 −1 0
2 −1 0 1









.

(iii) Find a basis for the nullspace of A.

The nullspace of A is the solution set of the system of linear
homogeneous equations with A as the coefficient matrix. To
solve the system, we convert A to reduced row echelon form:

→









1 1 2 −1
0 1 −4 −1
0 0 1 0
0 0 0 0









→









1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0









=⇒ x1 = x2 − x4 = x3 = 0

General solution: (x1, x2, x3, x4) = (0, t, 0, t) = t(0, 1, 0, 1).

Thus the vector (0, 1, 0, 1) forms a basis for the nullspace of A.



Problem 2. Let A and B be two matrices such

that the product AB is well defined.

(i) Prove that rank(AB) ≤ rank(B).

Suppose that Bx = 0 for some column vector x. Then
(AB)x = A(Bx) = A0 = 0. It follows that the nullspace of B
is contained in the nullspace of AB . Consequently,
nullity(B) ≤ nullity(AB). Since matrices AB and B have the
same number of columns, we obtain rank(AB) ≤ rank(B).

(ii) Prove that rank(AB) ≤ rank(A).

Note that rank(M) = rank(MT ) for any matrix M .
In particular, rank(AB) = rank((AB)T ) = rank(BTAT ).
By the above, rank(BTAT ) ≤ rank(AT ) = rank(A).

Remark. Alternatively, one can show that the row space of
AB is contained in the row space of B while the column space
of AB is contained in the column space of A.



Problem 3. Let V be a subspace of F (R) spanned by
functions ex and e−x . Let L be a linear operator on V such

that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex ,

e−x . Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Let A denote the matrix of the operator L relative to the basis
ex , e−x (which is given) and B denote the matrix of L relative
to the basis cosh x , sinh x (which is to be found). By
definition of the functions cosh x and sinh x , the transition

matrix from cosh x , sinh x to ex , e−x is U = 1

2

(

1 1
1 −1

)

.

It follows that B = U−1AU. We obtain that

B =

(

1 1
1 −1

)(

2 −1
−3 2

)

· 1
2

(

1 1
1 −1

)

=

(

0 −1
1 4

)

.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A− λI ) = 0. We obtain that

det(A− λI ) =

∣

∣

∣

∣

∣

∣

1− λ 2 0
1 1− λ 1
0 2 1− λ

∣

∣

∣

∣

∣

∣

= (1− λ)3 − 2(1− λ)− 2(1− λ) = (1− λ)
(

(1− λ)2 − 4
)

= (1− λ)
(

(1− λ)− 2
)(

(1− λ) + 2
)

= −(λ− 1)(λ+ 1)(λ− 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x , y , z) of the matrix A associated with
an eigenvalue λ is a nonzero solution of the vector equation

(A−λI )v = 0 ⇐⇒





1− λ 2 0
1 1− λ 1
0 2 1− λ









x
y
z



 =





0
0
0



 .

To solve the equation, we convert the matrix A− λI to
reduced row echelon form.



First consider the case λ = −1. The row reduction yields

A+ I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2





→





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A+ I )v = 0 ⇐⇒
{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R.
In particular, v1 = (1,−1, 1) is an eigenvector of A associated
with the eigenvalue −1.



Secondly, consider the case λ = 1. The row reduction yields

A− I =





0 2 0

1 0 1

0 2 0



 →





1 0 1

0 2 0

0 2 0



 →





1 0 1

0 1 0

0 2 0



 →





1 0 1

0 1 0

0 0 0



.

Hence

(A− I )v = 0 ⇐⇒
{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R.
In particular, v2 = (−1, 0, 1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case λ = 3. The row reduction yields

A−3I =





−2 2 0
1 −2 1
0 2 −2



→





1 −1 0
1 −2 1
0 2 −2



→





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A− 3I )v = 0 ⇐⇒
{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R.
In particular, v3 = (1, 1, 1) is an eigenvector of A associated
with the eigenvalue 3.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3

formed by its eigenvectors.

Namely, the vectors v1 = (1,−1, 1), v2 = (−1, 0, 1), and
v3 = (1, 1, 1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that v1, v2, v3 is a basis for R3.

Alternatively, the existence of a basis for R3 consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 4. Let A =





1 2 0
1 1 1
0 2 1



.

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue λ, that is, v 6= 0 and Av = λv. Then

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Therefore v is also an eigenvector of the matrix A2 and the
associated eigenvalue is λ2. We already know that the matrix
A has eigenvalues −1, 1, and 3. It follows that A2 has
eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A2. One reason is that the eigenvalue 1 has
multiplicity 2.



Problem 5. Find a linear polynomial which is the best least
squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

We are looking for a function f (x) = c1 + c2x , where c1, c2
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables c1
and c2:























c1 − 2c2 = −3,
c1 − c2 = −2,
c1 = 1,
c1 + c2 = 2,
c1 + 2c2 = 5.

This system is inconsistent.



We can represent the system as a matrix equation Ac = y,
where

A =













1 −2

1 −1

1 0

1 1

1 2













, c =

(

c1

c2

)

, y =













−3

−2

1

2

5













.

The least squares solution c of the above system is a solution
of the normal system ATAc = ATy:

(

1 1 1 1 1

−2 −1 0 1 2

)













1 −2

1 −1

1 0

1 1

1 2













(

c1

c2

)

=

(

1 1 1 1 1

−2 −1 0 1 2

)













−3

−2

1

2

5













⇐⇒
(

5 0

0 10

)(

c1

c2

)

=

(

3

20

)

⇐⇒
{

c1 = 3/5
c2 = 2

Thus the function f (x) = 3

5
+ 2x is the best least squares fit

to the above data among linear polynomials.





Problem 6. Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .

First we apply the Gram-Schmidt orthogonalization process to
vectors x1, x2 and obtain an orthogonal basis v1, v2 for the
subspace V :

v1 = x1 = (1, 1, 1, 1),

v2 = x2−
x2 · v1
v1 · v1

v1 = (1, 0, 3, 0)−4

4
(1, 1, 1, 1) = (0,−1, 2,−1).

Then we normalize vectors v1, v2 to obtain an orthonormal
basis w1,w2 for V :

‖v1‖ = 2 =⇒ w1 =
v1

‖v1‖ = 1

2
(1, 1, 1, 1)

‖v2‖ =
√
6 =⇒ w2 =

v2
‖v2‖ = 1√

6
(0,−1, 2,−1)



Problem 6. Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(ii) Find an orthonormal basis for the orthogonal complement
V⊥.

Since the subspace V is spanned by vectors (1, 1, 1, 1) and
(1, 0, 3, 0), it is the row space of the matrix

A =

(

1 1 1 1
1 0 3 0

)

.

Then the orthogonal complement V⊥ is the nullspace of A.
To find the nullspace, we convert the matrix A to reduced row
echelon form:

(

1 1 1 1
1 0 3 0

)

→
(

1 0 3 0
1 1 1 1

)

→
(

1 0 3 0
0 1 −2 1

)

.



Hence a vector (x1, x2, x3, x4) ∈ R
4 belongs to V⊥ if and only

if

(

1 0 3 0
0 1 −2 1

)









x1
x2
x3
x4









=

(

0
0

)

⇐⇒
{

x1 + 3x3 = 0
x2 − 2x3 + x4 = 0

⇐⇒
{

x1 = −3x3
x2 = 2x3 − x4

The general solution of the system is (x1, x2, x3, x4) =
= (−3t, 2t − s, t, s) = t(−3, 2, 1, 0) + s(0,−1, 0, 1), where
t, s ∈ R.

It follows that V⊥ is spanned by vectors x3 = (0,−1, 0, 1)
and x4 = (−3, 2, 1, 0).



The vectors x3 = (0,−1, 0, 1) and x4 = (−3, 2, 1, 0) form a
basis for the subspace V⊥.

It remains to orthogonalize and normalize this basis:

v3 = x3 = (0,−1, 0, 1),

v4 = x4 −
x4 · v3
v3 · v3

v3 = (−3, 2, 1, 0)− −2

2
(0,−1, 0, 1)

= (−3, 1, 1, 1),

‖v3‖ =
√
2 =⇒ w3 =

v3
‖v3‖ = 1√

2
(0,−1, 0, 1),

‖v4‖ =
√
12 = 2

√
3 =⇒ w4 =

v4
‖v4‖ = 1

2
√
3
(−3, 1, 1, 1).

Thus the vectors w3 =
1√
2
(0,−1, 0, 1) and

w4 =
1

2
√
3
(−3, 1, 1, 1) form an orthonormal basis for V⊥.



Problem 6. Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(iii) Find the distance from the vector y = (1, 0, 0, 0) to the
subspaces V and V⊥.

For any vector y ∈ R
4 the orthogonal projection of y onto the

subspace V is p = (y · w1)w1 + (y ·w2)w2 and the
orthogonal projection of y onto V⊥ is
o = (y ·w3)w3 + (y · w4)w4.

Then the distance from y to V is ‖y − p‖ = ‖o‖ and the
distance from y to V⊥ is ‖y− o‖ = ‖p‖.

In the case y = (1, 0, 0, 0), we obtain

p = 1

2
· 1

2
(1, 1, 1, 1) = 1

4
(1, 1, 1, 1),

o = −3

2
√
3
· 1

2
√
3
(−3, 1, 1, 1) = 1

4
(3,−1,−1,−1).

Hence ‖o‖ =
√
3

2
and ‖p‖ = 1

2
.



Problem 6. Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .
(ii) Find an orthonormal basis for the orthogonal complement
V⊥.

Alternative solution: First we extend the set x1, x2 to a basis
x1, x2, x3, x4 for R4. Then we orthogonalize and normalize
the latter. This yields an orthonormal basis w1,w2,w3,w4

for R4.

By construction, w1,w2 is an orthonormal basis for V .
It follows that w3,w4 is an orthonormal basis for V⊥.



The set x1 = (1, 1, 1, 1), x2 = (1, 0, 3, 0) can be extended to
a basis for R4 by adding two vectors from the standard basis.

For example, we can add vectors e3 = (0, 0, 1, 0) and
e4 = (0, 0, 0, 1). To show that x1, x2, e3, e4 is indeed a basis
for R4, we check that the matrix whose rows are these vectors
is nonsingular:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 0 3 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

1 3 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

= −1 6= 0.



To orthogonalize the basis x1, x2, e3, e4, we apply the
Gram-Schmidt process:

v1 = x1 = (1, 1, 1, 1),

v2 = x2−
x2 · v1
v1 · v1

v1 = (1, 0, 3, 0)− 4

4
(1, 1, 1, 1) = (0,−1, 2,−1),

v3 = e3 −
e3 · v1
v1 · v1

v1 −
e3 · v2
v2 · v2

v2 = (0, 0, 1, 0)− 1

4
(1, 1, 1, 1)−

−2

6
(0,−1, 2,−1) =

(

−1

4
, 1

12
, 1

12
, 1

12

)

= 1

12
(−3, 1, 1, 1),

v4 = e4 −
e4 · v1
v1 · v1

v1 −
e4 · v2
v2 · v2

v2 −
e4 · v3
v3 · v3

v3 = (0, 0, 0, 1)−

−1

4
(1, 1, 1, 1)− −1

6
(0,−1, 2,−1)− 1/12

1/12
· 1

12
(−3, 1, 1, 1) =

=
(

0,−1

2
, 0, 1

2

)

= 1

2
(0,−1, 0, 1).



It remains to normalize vectors v1 = (1, 1, 1, 1),

v2 = (0,−1, 2,−1), v3 =
1

12
(−3, 1, 1, 1), v4 =

1

2
(0,−1, 0, 1):

‖v1‖ = 2 =⇒ w1 =
v1

‖v1‖ = 1

2
(1, 1, 1, 1)

‖v2‖ =
√
6 =⇒ w2 =

v2
‖v2‖ = 1√

6
(0,−1, 2,−1)

‖v3‖ = 1√
12

= 1

2
√
3

=⇒ w3 =
v3

‖v3‖ = 1

2
√
3
(−3, 1, 1, 1)

‖v4‖ = 1√
2

=⇒ w4 =
v4

‖v4‖ = 1√
2
(0,−1, 0, 1)

Thus w1,w2 is an orthonormal basis for V while w3,w4 is an
orthonormal basis for V⊥.


