MATH 311
 Topics in Applied Mathematics I

Lecture 29:
Orthogonality in inner product spaces.

Norm

The notion of norm generalizes the notion of length of a vector in \mathbb{R}^{n}.

Definition. Let V be a vector space. A function $\alpha: V \rightarrow \mathbb{R}$, usually denoted $\alpha(\mathbf{x})=\|\mathbf{x}\|$, is called a norm on V if it has the following properties:
(i) $\|\mathbf{x}\| \geq 0,\|\mathbf{x}\|=0$ only for $\mathbf{x}=\mathbf{0} \quad$ (positivity)
(ii) $\|r \mathbf{x}\|=|r|\|\mathbf{x}\|$ for all $r \in \mathbb{R} \quad$ (homogeneity)
(iii) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \quad$ (triangle inequality)

A normed vector space is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$.

Examples. $\quad V=\mathbb{R}^{n}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- $\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$.
- $\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}, p \geq 1$.

Examples. $\quad V=C[a, b], \quad f:[a, b] \rightarrow \mathbb{R}$.

- $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$.
- $\|f\|_{p}=\left(\int_{a}^{b}|f(x)|^{p} d x\right)^{1 / p}, p \geq 1$.

Inner product

The notion of inner product generalizes the notion of dot product of vectors in \mathbb{R}^{n}.
Definition. Let V be a vector space. A function $\beta: V \times V \rightarrow \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle$, is called an inner product on V if it is positive, symmetric, and bilinear. That is, if
(i) $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0,\langle\mathbf{x}, \mathbf{x}\rangle=0$ only for $\mathbf{x}=\mathbf{0}$ (positivity)
(ii) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
(symmetry)
(iii) $\langle r \mathbf{x}, \mathbf{y}\rangle=r\langle\mathbf{x}, \mathbf{y}\rangle$
(homogeneity)
(iv) $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle \quad$ (distributive law)

An inner product space is a vector space endowed with an inner product.

Examples. $\quad V=\mathbb{R}^{n}$.

- $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
- $\langle\mathbf{x}, \mathbf{y}\rangle=d_{1} x_{1} y_{1}+d_{2} x_{2} y_{2}+\cdots+d_{n} x_{n} y_{n}$,
where $d_{1}, d_{2}, \ldots, d_{n}>0$.

Examples. $\quad V=C[a, b]$.

- $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$.
- $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) d x$,
where w is bounded, piecewise continuous, and $w>0$ everywhere on $[a, b]$.

Theorem Suppose $\langle\mathbf{x}, \mathbf{y}\rangle$ is an inner product on a vector space V. Then

$$
\langle\mathbf{x}, \mathbf{y}\rangle^{2} \leq\langle\mathbf{x}, \mathbf{x}\rangle\langle\mathbf{y}, \mathbf{y}\rangle \quad \text { for all } \mathbf{x}, \mathbf{y} \in V
$$

Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_{t}=\mathbf{x}+t \mathbf{y}$. Then

$$
\begin{aligned}
\left\langle\mathbf{v}_{t}, \mathbf{v}_{t}\right\rangle & =\langle\mathbf{x}+t \mathbf{y}, \mathbf{x}+t \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{x}+t \mathbf{y}\rangle+t\langle\mathbf{y}, \mathbf{x}+t \mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+t\langle\mathbf{x}, \mathbf{y}\rangle+t\langle\mathbf{y}, \mathbf{x}\rangle+t^{2}\langle\mathbf{y}, \mathbf{y}\rangle .
\end{aligned}
$$

Assume that $\mathbf{y} \neq \mathbf{0}$ and let $t=-\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\langle\mathbf{y}, \mathbf{y}\rangle}$. Then

$$
\left\langle\mathbf{v}_{t}, \mathbf{v}_{t}\right\rangle=\langle\mathbf{x}, \mathbf{x}\rangle+t\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle-\frac{\langle\mathbf{x}, \mathbf{y}\rangle^{2}}{\langle\mathbf{y}, \mathbf{y}\rangle} .
$$

Since $\left\langle\mathbf{v}_{t}, \mathbf{v}_{t}\right\rangle \geq 0$, the desired inequality follows. In the case $\mathbf{y}=\mathbf{0}$, we have $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{y}\rangle=0$.

Cauchy-Schwarz Inequality:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle} .
$$

Corollary $1 \quad|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
Equivalently, for all $x_{i}, y_{i} \in \mathbb{R}$,
$\left(x_{1} y_{1}+\cdots+x_{n} y_{n}\right)^{2} \leq\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)$.
Corollary 2 For any $f, g \in C[a, b]$,
$\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq \int_{a}^{b}|f(x)|^{2} d x \cdot \int_{a}^{b}|g(x)|^{2} d x$.

Norms induced by inner products

Theorem Suppose $\langle\mathbf{x}, \mathbf{y}\rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$ is a norm. Proof: Positivity is obvious. Homogeneity:

$$
\|r \mathbf{x}\|=\sqrt{\langle r \mathbf{x}, r \mathbf{x}\rangle}=\sqrt{r^{2}\langle\mathbf{x}, \mathbf{x}\rangle}=|r| \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} .
$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$
\begin{gathered}
\|\mathbf{x}+\mathbf{y}\|^{2}=\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
=\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \\
\leq\langle\mathbf{x}, \mathbf{x}\rangle+|\langle\mathbf{x}, \mathbf{y}\rangle|+|\langle\mathbf{y}, \mathbf{x}\rangle|+\langle\mathbf{y}, \mathbf{y}\rangle \\
\leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{gathered}
$$

Examples. - The length of a vector in \mathbb{R}^{n},

$$
\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

is the norm induced by the dot product

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

- The norm $\|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2}$ on the
vector space $C[a, b]$ is induced by the inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Angle

Let V be an inner product space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

for all $\mathbf{x}, \mathbf{y} \in V$ (the Cauchy-Schwarz inequality).
Therefore we can define the angle between nonzero vectors in V by

$$
\angle(\mathbf{x}, \mathbf{y})=\arccos \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Then $\langle\mathbf{x}, \mathbf{y}\rangle=\|\mathbf{x}\|\|\mathbf{y}\| \cos \angle(\mathbf{x}, \mathbf{y})$.
In particular, vectors \mathbf{x} and \mathbf{y} are orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.

Orthogonal sets

Let V be an inner product space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$.
Definition. A nonempty set $S \subset V$ of nonzero vectors is called an orthogonal set if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle\mathbf{x}, \mathbf{y}\rangle=0$ for any $\mathbf{x}, \mathbf{y} \in S, \mathbf{x} \neq \mathbf{y}$.
An orthogonal set $S \subset V$ is called orthonormal if $\|\mathbf{x}\|=1$ for any $\mathbf{x} \in S$.
Remark. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ form an orthonormal set if and only if

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Example

$$
\begin{gathered}
\text { - } V=C[-\pi, \pi],\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x . \\
f_{1}(x)=\sin x, f_{2}(x)=\sin 2 x, \ldots, f_{n}(x)=\sin n x, \ldots \\
\left\langle f_{m}, f_{n}\right\rangle=\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x= \begin{cases}\pi & \text { if } m=n, \\
0 & \text { if } m \neq n .\end{cases}
\end{gathered}
$$

Thus the set $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$
\langle\langle f, g\rangle\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

Orthogonality \Longrightarrow linear independence

Theorem Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Proof: Suppose $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$ for some $t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}$.
Then for any index $1 \leq i \leq k$ we have

$$
\begin{gathered}
\left\langle t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{0}, \mathbf{v}_{i}\right\rangle=0 . \\
\Longrightarrow \\
t_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{i}\right\rangle+t_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}_{i}\right\rangle+\cdots+t_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle=0
\end{gathered}
$$

By orthogonality, $t_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle=0 \Longrightarrow t_{i}=0$.

Orthonormal basis

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthonormal basis for an inner product space V.

Theorem 1 Let $\mathbf{x}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}$ and $\mathbf{y}=y_{1} \mathbf{v}_{1}+y_{2} \mathbf{v}_{2}+\cdots+y_{n} \mathbf{v}_{n}$, where $x_{i}, y_{j} \in \mathbb{R}$.
Then
(i) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$,
(ii) $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.

Theorem 2 For any vector $x \in V$,

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\cdots+\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle \mathbf{v}_{n} .
$$

Orthogonal projection

Theorem Let V be an inner product space and V_{0} be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.
The component \mathbf{p} is called the orthogonal projection of the vector x onto the subspace V_{0}.

The projection \mathbf{p} is closer to \mathbf{x} than any other vector in V_{0}. Hence the distance from \mathbf{x} to V_{0} is $\|\mathbf{x}-\mathbf{p}\|=\|\mathbf{o}\|$.

Theorem Let V be an inner product space and V_{0} be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.

Theorem Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for the subspace V_{0}. Then for any vector $\mathbf{x} \in V$ the orthogonal projection \mathbf{p} onto V_{0} is given by

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n} .
$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for V. Let
$\mathbf{v}_{1}=\mathbf{x}_{1}$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.

Normalization

Let V be a vector space with an inner product.
Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.
Let $\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}, \ldots, \mathbf{w}_{n}=\frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}$.
Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is an orthonormal basis for V.
Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Approximate the function $f(x)=e^{x}$ on the interval $[-1,1]$ by a quadratic polynomial.

The best approximation would be a polynomial $p(x)$ that minimizes the distance relative to the uniform norm:

$$
\|f-p\|_{\infty}=\max _{|x| \leq 1}|f(x)-p(x)| .
$$

However there is no analytic way to find such a polynomial. Instead, one can find a "least squares" approximation that minimizes the integral norm

$$
\|f-p\|_{2}=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

The norm $\|\cdot\|_{2}$ is induced by the inner product

$$
\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x
$$

Therefore $\|f-p\|_{2}$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_{3} of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^{2}$, which form a basis for \mathcal{P}_{3}.
This would yield an orthogonal basis p_{0}, p_{1}, p_{2}.
Then

$$
p(x)=\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x) .
$$

Fourier series: view from linear algebra

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \ldots$ are nonzero vectors in an inner product space V that form an orthogonal set S. Given $\mathbf{x} \in V$, the Fourier series of the vector \mathbf{x} relative to the orthogonal set S is a series

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}+\cdots, \text { where } c_{i}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle}
$$

The numbers c_{1}, c_{2}, \ldots are called the Fourier coefficients of \mathbf{x} relative to S.

By construction, a partial sum $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ of the Fourier series is the orthogonal projection of the vector \mathbf{x} onto the subspace $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$.

Classical Fourier series

Consider a functional vector space $V=C[-\pi, \pi]$ with the standard inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$.
Then the functions $1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots$ form an orthogonal set in the inner product space V. This gives rise to the classical Fourier series of a function $F \in C[-\pi, \pi]$:

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x,
$$

where

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) d x
$$

and for $n \geq 1$,

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos n x d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin n x d x
$$

Convergence of Fourier series

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \ldots$ are vectors in an inner product space V that form an orthogonal set S. The set S is called a Hilbert basis for V if any vector $\mathbf{x} \in V$ can be expanded into a series $\mathbf{x}=\sum_{n=1}^{\infty} \alpha_{n} \mathbf{v}_{n}$, where α_{n} are some scalars.

Theorem 1 If S is a Hilbert basis for V, then the above expansion is unique for any vector $\mathbf{x} \in V$. Namely, it coincides with the Fourier series of \mathbf{x} relative to S.

Theorem 2 The functions $1, \sin x, \cos x, \sin 2 x, \cos 2 x, \ldots$ form a Hilbert basis for the space $C[-\pi, \pi]$.
As a consequence, Fourier series of a continuous function on $[-\pi, \pi]$ converges to this function with respect to the distance

$$
\operatorname{dist}(f, g)=\|f-g\|=\left(\int_{-\pi}^{\pi}|f(x)-g(x)|^{2} d x\right)^{1 / 2} .
$$

Note that this need not imply pointwise convergence.

