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Lecture 29:
Orthogonality in inner product spaces.



Norm

The notion of norm generalizes the notion of length
of a vector in R".

Definition. Let V be a vector space. A function
a:V — R, usually denoted «a(x) = ||x||, is called
a norm on V if it has the following properties:

(i) ||x|| >0, ||x]] =0 only for x=0  (positivity)
(ii) |[rx|| = |r|||x]| forall reR (homogeneity)
(iii) Ix +yl| < [Ix]] + [yl (triangle inequality)

A normed vector space is a vector space endowed
with a norm. The norm defines a distance function
on the normed vector space: dist(x,y) = ||x —y||.



Examples. V =R", x = (x1,%,...,X,) € R".
o |Ix[oc = max(|xi], [xal, .., [xal)-

1/p

o |Ixll,= (PalP+ pelP+ -+ |xl?)"" p> 1.

Examples. V = Cla, b|, f:[a, b] — R.

o [l = max [F(x)]

b 1/p
-Hﬂb=</!ﬂwWW> sl



Inner product

The notion of inner product generalizes the notion
of dot product of vectors in R”.

Definition. Let V be a vector space. A function
f:V xV =R, usually denoted 5(x,y) = (x,y),
is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) ={y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+y,z) =(x,z) + (y,z) (distributive law)
An inner product space is a vector space endowed
with an inner product.



Examples. V =R".
o (X,y) =X y=xy1+ X2+ "+ XpYn

i <X, y> = lelyl + d2X2y2 + e dnxn)/ny
where di,d>,...,d, > 0.

Examples. V = CJa, b].

o (fg)= | F(0g(x)ox.

b
o (Fg)= [ FE(w(x) o

where w is bounded, piecewise continuous, and
w > 0 everywhere on [a, b].



Theorem Suppose (x,y) is an inner product on a
vector space V. Then

(x,y)* < (x,x)(y,y) forall x,yeV.
Proof: Forany te R let vi =x+ty. Then
<Vt7 Vt> - <X + ty,X + ty> - <X7X + ty> + t<y,X + ty>
= (x,x) + t(x,y) + t{y, x) + t3(y,y).

Assume that y # 0 and let t = _(x,y)I Then
{y.y)

(x,y)°

Vi, Vi) = (X, X) + E(Y, X) = (X, X) — .

Since (v¢,vy) > 0, the desired inequality follows.
In the case y =0, we have (x,y) = (y,y) =0.



Cauchy-Schwarz Inequality:

(%, ¥)] < /(%) \/(y, ).

Corollary 1 |x-y| < |[|x||[|y|| for all x,y € R".
Equivalently, for all x;, y; € R,

i+ + X)) < OF 4+ +x) 0+ +y7).

Corollary 2 For any f,g € C|a, b],

</ab fx)g(x) dx) / [F(x)|? dx - / 1g(x)[? dx.



Norms induced by inner products

Theorem Suppose (x,y) is an inner product on a
vector space V. Then ||x|| = \/(x,x) is a norm.

Proof: Positivity is obvious. Homogeneity:

[rx|| = 1/ {rx, rx) = \/r2(x,x) = |r| /(x,x).
Triangle inequality (follows from Cauchy-Schwarz's):
Ix +yl* = (x+y,x+y)
= (%,%) + (X, y) + {y,x) + {y, y)
< (% %) + [y + [y, x)[ + (¥, ¥)
< [|x[1Z =+ 2[Ix[ flyll + [IylI* = (lIxI] + [ly[})*.




Examples. e The length of a vector in R”,
X[ = Vx§ 53+ 47,
is the norm induced by the dot product

XYy =Xy1t+Xy+ -+ XpYn-

b 1/2
e The norm ||f]j2 = (/ ]f(x)]zdx> on the

vector space C|a, b] is induced by the inner product

(f.g) = | F(g(x) o



Angle
Let V' be an inner product space with an inner
product (-, -) and the induced norm || - ||. Then

[ < x|yl

for all x,y € V' (the Cauchy-Schwarz inequality).
Therefore we can define the angle between nonzero
vectors in V' by

Z(x,y) = arccos

x| [yl
Then (x,y) = ||x] |ly]l cos Z(x,y).

In particular, vectors x and y are orthogonal
(denoted x L y) if (x,y)=0.



Orthogonal sets

Let V be an inner product space with an inner
product (-,-) and the induced norm || - ||.

Definition. A nonempty set S C V' of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
||| =1 for any x € S.

Remark. Vectors vi,vy,...,v, € V form an
orthonormal set if and only if

(1 if =]
<"”"J>_{0 if i),



Example

o V=Cl-ma] (fg)= / " F(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., fo(x) =sinnx, ...

T m if m=
(T ) :/_ sin(mx) sin(nx) dx = { 0 i :#Z’

Thus the set {fi, h, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



Orthogonality —> linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
V1,Vo, ...,V are linearly independent.

Proof: Suppose tivi+ thovy + -+ teve =0
for some t, ty, ..., tx € R.

Then for any index 1 </ < k we have

<t1v1 + vy + - - - + Ly, Vi> = <0, Vi> = 0.
—> ti{vi, V) + to(vo, Vi) + -+ (Vi vp) = 0
By orthogonality, t{v;,v;) =0 = t; =0.



Orthonormal basis

Suppose vi,V»,...,Vv, is an orthonormal basis for
an inner product space V.

Theorem 1 Let x = x;vy + xovp + - - - + x,v,, and
Y = yiV1 + yoVo + - - - + ypv,, where x;, y; € R.
Then

(') <X, Y> = X1y1 + Xoy2 + -+ + XpYn,

@) [l = /oF G+t

Theorem 2 For any vector x € V,

x = (x,v)vi + (X, vo)vp + - - - + (X, V)V,



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V' is
uniquely represented as x = p + o, where p € V4 and

ol Vo.

The component p is called the orthogonal projection of the
vector x onto the subspace V.

Vo

The projection p is closer to x than any other vector in V.
Hence the distance from x to V; is [|[x — p|| = ||o]|.



Theorem Let V be an inner product space and V
be a finite-dimensional subspace of V. Then any
vector x € V' is uniquely represented as x = p + o,
where p € Vp and o L V.

Theorem Suppose vi,vy, ..., Vv, is an orthogonal
basis for the subspace V{. Then for any vector
x € V the orthogonal projection p onto Vj is given

Vn-



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
Vo = Xy — <X2, V1>V11
(v1,v1)
V3 = X3 — (x3, V1>V1 _ <X3,V2>v2'
<V1, V]_> <V2,V2>
vy, o) KeVer)
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



Normalization

Let V be a vector space with an inner product.

Suppose vi,V»,...,V, is an orthogonal basis for V.
V) Vp
Let w; = Wy = ——— W, = .
[va [v2] [[vall
Then wy,ws,...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Problem. Approximate the function f(x) = e*
on the interval [—1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform
nhorm:

If = Plloc = max [f(x) — p(x)].

|x|<1

However there is no analytic way to find such a
polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

I el = ( [ ()~ pLoP o) 7



The norm || - ||2 is induced by the inner product

(g, h) = /_ g(x)h(x) dx.

1

Therefore ||f — p||2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3; of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x, x?, which form a basis for Ps.
This would yleld an orthogonal basis pg, p1, ps.
Then
(f, po) {f, p1) (f. p2)
X X) + p1(x) + P2(Xx).
S P P L A P L)




Fourier series: view from linear algebra

Suppose vi,Vs,...,V,, ... are nonzero vectors in an inner
product space V that form an orthogonal set S. Given

x € V, the Fourier series of the vector x relative to the
orthogonal set S is a series

(x,v;)

CiV1 + GVp + -+ -+ ¢V, + - -+, where c,-:<v V)
iy Vi

The numbers ¢, ¢, ... are called the Fourier coefficients
of x relative to S.

By construction, a partial sum c;vi + 6V, + - - -+ ¢,v, of the
Fourier series is the orthogonal projection of the vector x onto
the subspace Span(vi,va,...,v,).



Classical Fourier series

Consider a functional vector space V = C[—m, 7| with the
™

standard inner product (f,g) :/ f(x)g(x) dx.

Then the functions 1, sin x, cos x, sin 2x, cos 2x, ... form an
orthogonal set in the inner product space V. This gives rise
to the classical Fourier series of a function F € C[—m,7]:

o0 [o¢] .
aop + E a, cos nx + E b, sin nx,
n=1 n=1

where ) -
=5 F(x) dx

—T

and for n > 1,

1 [7 1 [7
a,,:—/ F(x) cos nx dx, b,,:—/ F(x) sin nx dx.

™ J)_x ™ T



Convergence of Fourier series

Suppose vi,Va,...,V,, ... are vectors in an inner product
space V that form an orthogonal set S. The set S is called a
Hilbert basis for V if any vector x € V' can be expanded
into a series x = 22021 apV,, wWhere o, are some scalars.

Theorem 1 If S is a Hilbert basis for V, then the above
expansion is unique for any vector x € V. Namely, it
coincides with the Fourier series of x relative to S.

Theorem 2 The functions 1,sin x, cos x, sin 2x, cos 2x, . . .
form a Hilbert basis for the space C[—m,7].

As a consequence, Fourier series of a continuous function on
[, 7] converges to this function with respect to the distance

ais(r,g) = I~ gl = ([ 170 - )7 o) "

—T

Note that this need not imply pointwise convergence.



