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Orthogonality in inner product spaces.



Norm

The notion of norm generalizes the notion of length

of a vector in R
n.

Definition. Let V be a vector space. A function

α : V → R, usually denoted α(x) = ‖x‖, is called
a norm on V if it has the following properties:

(i) ‖x‖ ≥ 0, ‖x‖ = 0 only for x = 0 (positivity)

(ii) ‖rx‖ = |r | ‖x‖ for all r ∈ R (homogeneity)
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

A normed vector space is a vector space endowed

with a norm. The norm defines a distance function
on the normed vector space: dist(x, y) = ‖x− y‖.



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

• ‖x‖p =
(

|x1|
p + |x2|

p + · · ·+ |xn|
p
)1/p

, p ≥ 1.

Examples. V = C [a, b], f : [a, b] → R.

• ‖f ‖∞ = max
a≤x≤b

|f (x)|.

• ‖f ‖p =

(
∫ b

a

|f (x)|p dx

)1/p

, p ≥ 1.



Inner product

The notion of inner product generalizes the notion

of dot product of vectors in R
n.

Definition. Let V be a vector space. A function
β : V × V → R, usually denoted β(x, y) = 〈x, y〉,

is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) 〈x, x〉 ≥ 0, 〈x, x〉 = 0 only for x = 0 (positivity)
(ii) 〈x, y〉 = 〈y, x〉 (symmetry)

(iii) 〈rx, y〉 = r〈x, y〉 (homogeneity)
(iv) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (distributive law)

An inner product space is a vector space endowed

with an inner product.



Examples. V = R
n.

• 〈x, y〉 = x · y = x1y1 + x2y2 + · · ·+ xnyn.

• 〈x, y〉 = d1x1y1 + d2x2y2 + · · ·+ dnxnyn,

where d1, d2, . . . , dn > 0.

Examples. V = C [a, b].

• 〈f , g〉 =

∫ b

a

f (x)g(x) dx .

• 〈f , g〉 =

∫ b

a

f (x)g(x)w(x) dx ,

where w is bounded, piecewise continuous, and

w > 0 everywhere on [a, b].



Theorem Suppose 〈x, y〉 is an inner product on a
vector space V . Then

〈x, y〉2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ V .

Proof: For any t ∈ R let vt = x+ ty. Then

〈vt , vt〉 = 〈x+ ty, x+ ty〉 = 〈x, x+ ty〉+ t〈y, x+ ty〉

= 〈x, x〉+ t〈x, y〉+ t〈y, x〉+ t2〈y, y〉.

Assume that y 6= 0 and let t = −
〈x, y〉

〈y, y〉
. Then

〈vt , vt〉 = 〈x, x〉+ t〈y, x〉 = 〈x, x〉 −
〈x, y〉2

〈y, y〉
.

Since 〈vt , vt〉 ≥ 0, the desired inequality follows.
In the case y = 0, we have 〈x, y〉 = 〈y, y〉 = 0.



Cauchy-Schwarz Inequality:

|〈x, y〉| ≤
√

〈x, x〉
√

〈y, y〉.

Corollary 1 |x · y| ≤ ‖x‖ ‖y‖ for all x, y ∈ R
n.

Equivalently, for all xi , yi ∈ R,

(x1y1 + · · ·+ xnyn)
2 ≤ (x2

1
+ · · · + x2n)(y

2

1
+ · · ·+ y 2

n ).

Corollary 2 For any f , g ∈ C [a, b],
(
∫ b

a

f (x)g(x) dx

)2

≤

∫ b

a

|f (x)|2 dx ·

∫ b

a

|g(x)|2 dx .



Norms induced by inner products

Theorem Suppose 〈x, y〉 is an inner product on a
vector space V . Then ‖x‖ =

√

〈x, x〉 is a norm.

Proof: Positivity is obvious. Homogeneity:

‖rx‖ =
√

〈rx, rx〉 =
√

r 2〈x, x〉 = |r |
√

〈x, x〉.

Triangle inequality (follows from Cauchy-Schwarz’s):

‖x+ y‖2 = 〈x+ y, x+ y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

≤ 〈x, x〉+ |〈x, y〉|+ |〈y, x〉|+ 〈y, y〉

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.



Examples. • The length of a vector in R
n,

‖x‖ =
√

x2
1
+ x2

2
+ · · ·+ x2n ,

is the norm induced by the dot product

x · y = x1y1 + x2y2 + · · ·+ xnyn.

• The norm ‖f ‖2 =

(
∫ b

a

|f (x)|2 dx

)1/2

on the

vector space C [a, b] is induced by the inner product

〈f , g〉 =

∫ b

a

f (x)g(x) dx .



Angle

Let V be an inner product space with an inner

product 〈·, ·〉 and the induced norm ‖ · ‖. Then

|〈x, y〉| ≤ ‖x‖ ‖y‖

for all x, y ∈ V (the Cauchy-Schwarz inequality).

Therefore we can define the angle between nonzero
vectors in V by

∠(x, y) = arccos
〈x, y〉

‖x‖ ‖y‖
.

Then 〈x, y〉 = ‖x‖ ‖y‖ cos∠(x, y).

In particular, vectors x and y are orthogonal
(denoted x ⊥ y) if 〈x, y〉 = 0.



Orthogonal sets

Let V be an inner product space with an inner

product 〈·, ·〉 and the induced norm ‖ · ‖.

Definition. A nonempty set S ⊂ V of nonzero

vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. That is, 0 /∈ S and
〈x, y〉 = 0 for any x, y ∈ S , x 6= y.

An orthogonal set S ⊂ V is called orthonormal if
‖x‖ = 1 for any x ∈ S .

Remark. Vectors v1, v2, . . . , vk ∈ V form an

orthonormal set if and only if

〈vi , vj〉 =

{

1 if i = j ,
0 if i 6= j .



Example

• V = C [−π, π], 〈f , g〉 =

∫ π

−π

f (x)g(x) dx .

f1(x) = sin x , f2(x) = sin 2x , . . . , fn(x) = sin nx , . . .

〈fm, fn〉 =

∫ π

−π

sin(mx) sin(nx) dx =

{

π if m = n,

0 if m 6= n.

Thus the set {f1, f2, f3, . . . } is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner

product

〈〈f , g〉〉 =
1

π

∫ π

−π

f (x)g(x) dx .



Orthogonality =⇒ linear independence

Theorem Suppose v1, v2, . . . , vk are nonzero
vectors that form an orthogonal set. Then

v1, v2, . . . , vk are linearly independent.

Proof: Suppose t1v1 + t2v2 + · · ·+ tkvk = 0
for some t1, t2, . . . , tk ∈ R.

Then for any index 1 ≤ i ≤ k we have

〈t1v1 + t2v2 + · · ·+ tkvk , vi〉 = 〈0, vi〉 = 0.

=⇒ t1〈v1, vi〉 + t2〈v2, vi〉+ · · ·+ tk〈vk , vi〉 = 0

By orthogonality, ti〈vi , vi〉 = 0 =⇒ ti = 0.



Orthonormal basis

Suppose v1, v2, . . . , vn is an orthonormal basis for
an inner product space V .

Theorem 1 Let x = x1v1 + x2v2 + · · ·+ xnvn and

y = y1v1 + y2v2 + · · ·+ ynvn, where xi , yj ∈ R.
Then
(i) 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn,

(ii) ‖x‖ =
√

x2
1
+ x2

2
+ · · ·+ x2n .

Theorem 2 For any vector x ∈ V ,

x = 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vn〉vn.



Orthogonal projection

Theorem Let V be an inner product space and V0 be a
finite-dimensional subspace of V . Then any vector x ∈ V is
uniquely represented as x = p+ o, where p ∈ V0 and
o ⊥ V0.

The component p is called the orthogonal projection of the
vector x onto the subspace V0.

V0

o

p

x

The projection p is closer to x than any other vector in V0.
Hence the distance from x to V0 is ‖x− p‖ = ‖o‖.



Theorem Let V be an inner product space and V0

be a finite-dimensional subspace of V . Then any

vector x ∈ V is uniquely represented as x = p+ o,
where p ∈ V0 and o ⊥ V0.

Theorem Suppose v1, v2, . . . , vn is an orthogonal
basis for the subspace V0. Then for any vector

x ∈ V the orthogonal projection p onto V0 is given
by

p =
〈x, v1〉

〈v1, v1〉
v1 +

〈x, v2〉

〈v2, v2〉
v2 + · · ·+

〈x, vn〉

〈vn, vn〉
vn.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose x1, x2, . . . , xn is a basis for V . Let

v1 = x1,

v2 = x2 −
〈x2, v1〉

〈v1, v1〉
v1,

v3 = x3 −
〈x3, v1〉

〈v1, v1〉
v1 −

〈x3, v2〉

〈v2, v2〉
v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn −
〈xn, v1〉

〈v1, v1〉
v1 − · · · −

〈xn, vn−1〉

〈vn−1, vn−1〉
vn−1.

Then v1, v2, . . . , vn is an orthogonal basis for V .



Normalization

Let V be a vector space with an inner product.
Suppose v1, v2, . . . , vn is an orthogonal basis for V .

Let w1 =
v1

‖v1‖
, w2 =

v2
‖v2‖

,. . . , wn =
vn

‖vn‖
.

Then w1,w2, . . . ,wn is an orthonormal basis for V .

Theorem Any finite-dimensional vector space with

an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an

orthonormal basis.



Problem. Approximate the function f (x) = ex

on the interval [−1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform

norm:
‖f − p‖∞ = max

|x |≤1

|f (x)− p(x)|.

However there is no analytic way to find such a

polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

‖f − p‖2 =

(
∫

1

−1

|f (x)− p(x)|2 dx

)1/2

.



The norm ‖ · ‖2 is induced by the inner product

〈g , h〉 =

∫

1

−1

g(x)h(x) dx .

Therefore ‖f − p‖2 is minimal if p is the

orthogonal projection of the function f on the
subspace P3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the

polynomials 1, x , x2, which form a basis for P3.
This would yield an orthogonal basis p0, p1, p2.

Then

p(x) =
〈f , p0〉

〈p0, p0〉
p0(x) +

〈f , p1〉

〈p1, p1〉
p1(x) +

〈f , p2〉

〈p2, p2〉
p2(x).



Fourier series: view from linear algebra

Suppose v1, v2, . . . , vn, . . . are nonzero vectors in an inner
product space V that form an orthogonal set S . Given
x ∈ V , the Fourier series of the vector x relative to the
orthogonal set S is a series

c1v1 + c2v2 + · · ·+ cnvn + · · · , where ci =
〈x, vi〉

〈vi , vi〉
.

The numbers c1, c2, . . . are called the Fourier coefficients
of x relative to S .

By construction, a partial sum c1v1 + c2v2 + · · ·+ cnvn of the
Fourier series is the orthogonal projection of the vector x onto
the subspace Span(v1, v2, . . . , vn).



Classical Fourier series

Consider a functional vector space V = C [−π, π] with the

standard inner product 〈f , g〉 =

∫ π

−π

f (x)g(x) dx .

Then the functions 1, sin x , cos x , sin 2x , cos 2x , . . . form an
orthogonal set in the inner product space V . This gives rise
to the classical Fourier series of a function F ∈ C [−π, π]:

a0 +
∑

∞

n=1

an cos nx +
∑

∞

n=1

bn sin nx ,

where

a0 =
1

2π

∫ π

−π

F (x) dx

and for n ≥ 1,

an =
1

π

∫ π

−π

F (x) cos nx dx , bn =
1

π

∫ π

−π

F (x) sin nx dx .



Convergence of Fourier series

Suppose v1, v2, . . . , vn, . . . are vectors in an inner product
space V that form an orthogonal set S . The set S is called a
Hilbert basis for V if any vector x ∈ V can be expanded
into a series x =

∑

∞

n=1
αnvn, where αn are some scalars.

Theorem 1 If S is a Hilbert basis for V , then the above
expansion is unique for any vector x ∈ V . Namely, it
coincides with the Fourier series of x relative to S .

Theorem 2 The functions 1, sin x , cos x , sin 2x , cos 2x , . . .
form a Hilbert basis for the space C [−π, π].

As a consequence, Fourier series of a continuous function on
[−π, π] converges to this function with respect to the distance

dist(f , g) = ‖f − g‖ =

(
∫ π

−π

|f (x)− g(x)|2 dx

)1/2

.

Note that this need not imply pointwise convergence.


