MATH 311
 Topics in Applied Mathematics I

Lecture 32:
Gradient, divergence, and curl. Review of integral calculus.

Gradient, divergence, and curl

Gradient of a scalar field $f=f\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is

$$
\operatorname{grad} f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Divergence of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is

$$
\operatorname{div} \mathbf{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}
$$

Curl of a vector field $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ is

$$
\operatorname{curl} \mathbf{F}=\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right)
$$

Informally, \quad curl $\mathbf{F}=\left|\begin{array}{ccc}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ \frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\ F_{1} & F_{2} & F_{3}\end{array}\right|$.

Del notation

Gradient, divergence, and curl can be denoted in a compact way using the del (a.k.a. nabla a.k.a. atled) "operator"

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$

Namely, $\operatorname{grad} f=\nabla f, \quad \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}, \quad \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}$.

Theorem $1 \operatorname{div}(\operatorname{curl} \mathbf{F})=0$ wherever the vector field \mathbf{F} is twice continuously differentiable.

Theorem $2 \operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$ wherever the scalar field f is twice continuously differentiable.

In the del notation, $\nabla \cdot(\nabla \times \mathbf{F})=0$ and $\nabla \times(\nabla f)=\mathbf{0}$. Note that $\nabla \cdot \nabla f=\Delta f$ (the Laplacian, also denoted $\nabla^{2} f$).

Riemann sums and Riemann integral

Definition. A Riemann sum of a function $f:[a, b] \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ generated by samples $t_{j} \in\left[x_{j-1}, x_{j}\right]$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) .
$$

Remark. $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ if $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$. The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n}\left|x_{j}-x_{j-1}\right|$.

Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on $[a, b]$ and the limit $I(f)$ is called the integral of f over $[a, b]$, denoted $\int_{a}^{b} f(x) d x$.

Riemann sums and Darboux sums

Integration as a linear operation

Theorem 1 If functions f, g are integrable on an interval $[a, b]$, then the sum $f+g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Theorem 2 If a function f is integrable on $[a, b]$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x
$$

More properties of integrals

Theorem If a function f is integrable on $[a, b]$ and $f([a, b]) \subset[A, B]$, then for each continuous function $g:[A, B] \rightarrow \mathbb{R}$ the composition $g \circ f$ is also integrable on $[a, b]$.

Theorem If functions f and g are integrable on $[a, b]$, then so is $f g$.

Theorem If a function f is integrable on $[a, b]$, then it is integrable on each subinterval $[c, d] \subset[a, b]$. Moreover, for any $c \in(a, b)$ we have

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Comparison theorems for integrals

Theorem 1 If functions f, g are integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Theorem 2 If f is integrable on $[a, b]$ and $f(x) \geq 0$ for $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.

Theorem 3 If f is integrable on $[a, b]$, then the function $|f|$ is also integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Fundamental theorem of calculus

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Problem. Evaluate $\int_{0}^{1} \frac{x(x-3)}{(x-1)^{2}(x+2)} d x$
To evaluate the integral, we need to decompose the rational function $R(x)=\frac{x(x-3)}{(x-1)^{2}(x+2)}$ into a sum of partial fractions:

$$
\begin{aligned}
& R(x)=\frac{a}{x-1}+\frac{b}{(x-1)^{2}}+\frac{c}{x+2} \\
&=\frac{a(x-1)(x+2)+b(x+2)+c(x-1)^{2}}{(x-1)^{2}(x+2)} \\
&=\frac{(a+c) x^{2}+(a+b-2 c) x+(-2 a+2 b+c)}{(x-1)^{2}(x+2)} . \\
&\left\{\begin{array}{l}
a+c=1 \\
a+b-2 c=-3 \\
-2 a+2 b+c=0
\end{array}\right.
\end{aligned}
$$

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed interval $[a, b]$ and f is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x=\int_{a}^{b} f(\phi(x)) d \phi(x) .
$$

Remarks. - The Leibniz differential $d \phi$ of the function ϕ is defined by $d \phi(x)=\phi^{\prime}(x) d x=\frac{d \phi}{d x} d x$.

- It is possible that $\phi(a) \geq \phi(b)$. Hence we set

$$
\int_{c}^{d} f(t) d t=-\int_{d}^{c} f(t) d t
$$

if $c>d$. Also, we set the integral to be 0 if $c=d$.

- $t=\phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Problem. Evaluate $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$.
To integrate this function, we introduce a new variable $u=1-x^{2}$:

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{\left(1-x^{2}\right)^{\prime}}{\sqrt{1-x^{2}}} d x \\
=-\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right)=-\frac{1}{2} \int_{1}^{3 / 4} \frac{1}{\sqrt{u}} d u \\
=\int_{3 / 4}^{1} \frac{1}{2 \sqrt{u}} d u=\left.\sqrt{u}\right|_{u=3 / 4} ^{1}=1-\frac{\sqrt{3}}{2} .
\end{gathered}
$$

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have measure zero if for any $\varepsilon>0$ the set E can be covered by a sequence of open intervals J_{1}, J_{2}, \ldots such that $\sum_{n=1}^{\infty}\left|J_{n}\right|<\varepsilon$.

Examples. - Any set E that can be represented as a sequence x_{1}, x_{2}, \ldots (such sets are called countable) has measure zero. Indeed, for any $\varepsilon>0$, let

$$
J_{n}=\left(x_{n}-\frac{\varepsilon}{2^{n+1}}, x_{n}+\frac{\varepsilon}{2^{n+1}}\right), \quad n=1,2, \ldots
$$

Then $E \subset J_{1} \cup J_{2} \cup \ldots$ and $\left|J_{n}\right|=\varepsilon / 2^{n}$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty}\left|J_{n}\right|=\varepsilon$.

- The set \mathbb{Q} of rational numbers has measure zero (since it is countable).
- Nondegenerate interval $[a, b]$ is not a set of measure zero.

Lebesgue's criterion for Riemann integrability

Definition. Suppose $P(x)$ is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that $P(x)$ holds for almost all $x \in S$ (or almost everywhere on $S)$ if the set $\{x \in S \mid P(x)$ does not hold $\}$ has measure zero.

Theorem A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$ if and only if f is bounded on $[a, b]$ and continuous almost everywhere on $[a, b]$.

