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Lecture 37:
Review for Test 3.



Topics for Test 3

Vector analysis (Leon/Colley 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Sample problems for Test 3

Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

Problem 2 Evaluate a double integral
�

P

(

2x + 3y − cos(πx + 2πy)
)

dx dy

over a parallelogram P with vertices (−1,−1),

(1, 0), (2, 2), and (0, 1).



Sample problems for Test 3

Problem 3 Find the volume of a tetrahedron (i.e.,
triangular pyramid) with vertices at points (0, 2, 1),

(1, 0, 0), (2, 1, 2), and (3, 1, 1).

Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(i) Verify that the field F is conservative.
(ii) Find a function f such that F = ∇f .



Sample problems for Test 3

Problem 5 Let C be a solid cylinder bounded by planes
z = 0, z = 2 and a cylindrical surface x2 + y 2 = 1. Orient
the boundary ∂C with outward normals and evaluate a surface
integral Æ

∂C

(x2e1 + y 2e2 + z2e3) · dS.

Problem 6 Let D be a region in R
3 bounded by a paraboloid

z = x2 + y 2 and a plane z = 9. Let S denote the part of the
paraboloid that bounds D, oriented by outward normals.
Evaluate a surface integral

�

S

curl(F) · dS,

where F(x , y , z) = (ex
2+z2 , xy + xz + yz , exyz).



Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

For any vector field F = (F1, F2, F3) we have,

informally,

curlF = ∇× F =

∣

∣

∣

∣

∣

∣

∣

e1 e2 e3
∂

∂x
∂

∂y
∂

∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

or, formally,

curlF =
(∂F3
∂y

−
∂F2
∂z

,
∂F1
∂z

−
∂F3
∂x

,
∂F2
∂x

−
∂F1
∂y

)

.



Problem 1 Find curl(curl(F)), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

Let G = curlF, G = (G1,G2,G3). We obtain

G1 =
∂F3

∂y
−

∂F2

∂z
=

∂

∂y
(x+sin y )−

∂

∂z
(zex+y ) = cos y −ex+y ,

G2 =
∂F1

∂z
−

∂F3

∂x
=

∂

∂z
(x2 + y 2)−

∂

∂x
(x + sin y ) = −1,

G3 =
∂F2

∂x
−

∂F1

∂y
=

∂

∂x
(zex+y )−

∂

∂y
(x2 + y 2) = zex+y − 2y .



Hence G = curlF = (cos y−ex+y , −1, zex+y−2y ).

Now let H = curlG, H = (H1,H2,H3). We obtain

H1 =
∂G3

∂y
−

∂G2

∂z
=

∂

∂y
(zex+y − 2y )−

∂

∂z
(−1) = zex+y − 2,

H2 =
∂G1

∂z
−
∂G3

∂x
=

∂

∂z
(cos y−ex+y)−

∂

∂x
(zex+y−2y )=−zex+y ,

H3 =
∂G2

∂x
−
∂G1

∂y
=

∂

∂x
(−1)−

∂

∂y
(cos y−ex+y ) = sin y+ex+y .

Thus curl(curl(F)) = (zex+y−2, −zex+y , sin y+ex+y).



Problem 2 Evaluate a double integral
�

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

over a parallelogram P with vertices (−1,−1), (1, 0), (2, 2),
and (0, 1).

Let us change coordinates in this integral so that the domain
of integration becomes the unit square Q = [0, 1]× [0, 1].
We are going to use a substitution of the form

(x , y ) = L(u, v ) = (a11u + a12v + b1, a21u + a22v + b2),

where aij , bi are constants. The constants are determined
from the conditions L(0, 0) = (−1,−1), L(1, 0) = (1, 0), and
L(0, 1)= (0, 1). That is, (b1, b2)=(−1,−1), (a11+b1, a21+b2)
= (1, 0), and (a12+b1, a22+b2) = (0, 1). We obtain that

L

(

u
v

)

=

(

2u + v − 1
u + 2v − 1

)

=

(

2 1
1 2

)(

u
v

)

+

(

−1
−1

)

.

The Jacobian matrix J of L is constant: J =

(

2 1
1 2

)

.



Changing coordinates in the integral from (x , y ) to (u, v ) so
that (x , y ) = L(u, v ) = (2u + v − 1, u + 2v − 1), we obtain
�

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy

=

�

L−1(P)

(

7u + 8v − 5− cos(4πu + 5πv − 3π)
)

|det J| du dv

=

� 1

0

� 1

0

3
(

7u + 8v − 5 + cos(4πu + 5πv )
)

du dv

=
21

2
+ 12− 15 +

� 1

0

� 1

0

3 cos(4πu + 5πv ) du dv .

Further,

� 1

0

3 cos(4πu + 5πv ) du =
3

4π
sin(4πu + 5πv )

∣

∣

∣

1

u=0

=
3

4π

(

sin(4π + 5πv )− sin(5πv )
)

= 0 for all v .

It follows that

�

P

(

2x + 3y − cos(πx + 2πy )
)

dx dy =
15

2
.



Problem 3 Find the volume of a tetrahedron (i.e., triangular
pyramid) with vertices at points (0, 2, 1), (1, 0, 0), (2, 1, 2),
and (3, 1, 1).

Let P denote the pyramid. Let A0 = (1, 0, 0), A1 = (0, 2, 1),
A2 = (2, 1, 2) and A3 = (3, 1, 1). Three edges adjacent to A0

are represented by vectors

v1 =
−−→
A0A1 = (0, 2, 1)− (1, 0, 0) = (−1, 2, 1),

v2 =
−−→
A0A2 = (2, 1, 2)− (1, 0, 0) = (1, 1, 2),

v3 =
−−→
A0A3 = (3, 1, 1)− (1, 0, 0) = (2, 1, 1).

Consider a transformation T : R3 → R
3 given by

T





x
y
z



 =





−1 1 2
2 1 1
1 2 1









x
y
z



+





1
0
0



.

The matrix is M = (v1, v2, v3).



By construction, T (0, 0, 0) = A0, T (1, 0, 0) = A1,
T (0, 1, 0) = A2 and T (0, 0, 1) = A3. It follows that T−1(P)
is the triangular pyramid with vertices at points (0, 0, 0),
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

Consider (0, 0, 1) to be the apex of the pyramid T−1(P).
Then the base is an isosceles right triangle with legs of length
1. Its area equals 1

2
. Besides, the edge (0, 0, 0)−(0, 0, 1) is

the altitude. Therefore the volume of the pyramid T−1(P)
equals 1

3
· 1
2
· 1 = 1

6
.

We have volume(T (D)) = |detM | volume(D) for any
domain D ⊂ R

3. In particular, volume(P) = |detM |/6.

detM =

∣

∣

∣

∣

∣

∣

−1 1 2
2 1 1
1 2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−1 1 2
0 3 5
0 3 3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−1 1 2
0 3 5
0 0 −2

∣

∣

∣

∣

∣

∣

= 6.

Thus volume(P) = 6 · 1
6
= 1.



x

y
z

Parallelepiped is a prism.

(Volume) = (area of the base) × (height)

Area of the base = ‖y × z‖

Volume = |x · (y× z)|



x

y
z

Tetrahedron is a pyramid.

(Volume) = 1

3
(area of the base) × (height)

Area of the base = 1

2
‖y × z‖

=⇒ Volume = 1

6
|x · (y × z)|



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(i) Verify that the field F is conservative.

Since F is a smooth vector field on the entire space, it is
conservative if and only if its Jacobian matrix is symmetric
everywhere in R

3. For vector fields on R
3, this is equivalent

to curl(F) = 0. We have to verify three identities.

∂F1

∂y
=

∂F2

∂x
:

∂

∂y
(yz+2 cos 2x) =

∂

∂x
(xz−ez ) ⇐⇒ z = z ,

∂F1

∂z
=

∂F3

∂x
:

∂

∂z
(yz+2 cos 2x) =

∂

∂x
(xy−yez) ⇐⇒ y = y ,

∂F2

∂z
=

∂F3

∂y
:

∂

∂z
(xz − ez) =

∂

∂y
(xy − yez)

⇐⇒ x − ez = x − ez .



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

We are looking for a function f : R3 → R such that
∂f

∂x
= yz + 2 cos 2x ,

∂f

∂y
= xz − ez ,

∂f

∂z
= xy − yez .

Integrating the third equality by z , we get

f (x , y , z) =

�

(xy − yez) dz = xyz − yez + g(x , y ).

Substituting this into the other equalities, we obtain that
yz + g ′

x = yz + 2 cos 2x and xz − ez + g ′
y = xz − ez .

Hence g ′
y = 0 so that g does not depend on y . Since

g ′
x = 2 cos 2x , we obtain that

g(x , y ) =

�

2 cos 2x dx = sin 2x + c, where c is a constant.

Finally, f (x , y , z) = xyz − yez + sin 2x + c.



Problem 4 Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

Alternative solution: If F = ∇f , then
�

x

F · ds = f (A1)− f (A0)

for any points A0,A1 ∈ R
3 and any path x joining A0 to A1.

We can use this relation to recover the function f .

For any given point A = (x , y , z) we consider a linear path xA
from the origin to A, xA : [0, 1] → R

3, xA(t) = (tx , ty , tz).
Then

f (A)− f (0) =

�

xA

F · ds =

� 1

0

F(xA(t)) · x
′
A(t) dt.



f (A)− f (0) =

�

xA

F · ds =

� 1

0

F(xA(t)) · x
′
A(t) dt

=

� 1

0

(t2yz + 2 cos 2tx , t2xz − etz , t2xy − tyetz ) · (x , y , z) dt

=

� 1

0

(

(t2yz +2 cos 2tx)x +(t2xz− etz )y +(t2xy − tyetz )z
)

dt

=

� 1

0

(3t2xyz + 2x cos 2tx − yetz − tyzetz) dt

= t3xyz
∣

∣

∣

1

t=0
+ sin 2tx

∣

∣

∣

1

t=0
− ytetz

∣

∣

∣

1

t=0
= xyz + sin 2x − yez .

Thus f (x , y , z) = xyz + sin 2x − yez + c, where c = f (0) is
a constant.



Problem 5 Let C be a solid cylinder bounded by planes
z = 0, z = 2 and a cylindrical surface x2 + y 2 = 1. Orient
the boundary ∂C with outward normals and evaluate a surface
integral Æ

∂C

(x2e1 + y 2e2 + z2e3) · dS.

By Gauss’ Theorem,
Æ

∂C

(x2e1+y 2e2+z2e3)·dS =

�

C

∇·(x2e1+y 2e2+z2e3) dV

=

�

C

(

∂

∂x
(x2) +

∂

∂y
(y 2) +

∂

∂z
(z2)

)

dx dy dz

=

�

C

2(x + y + z) dx dy dz .



To evaluate the integral, we switch to cylindrical coordinates
(r , φ, z) using the substitution x = r cos φ, y = r sinφ, z = z .

Jacobian matrix J =
∂(x , y , z)

∂(r , φ, z)
=





cos φ −r sinφ 0
sinφ r cosφ 0
0 0 1



.

�

C

2(x + y + z) dx dy dz

=

� 2

0

� 2π

0

� 1

0

2(r cosφ+ r sinφ+ z)|det J| dr dφ dz

=

� 2

0

� 2π

0

� 1

0

2(r cosφ+ r sinφ+ z)r dr dφ dz

=

� 2

0

� 2π

0

� 1

0

(

2r 2(cosφ+ sinφ) + 2rz
)

dr dφ dz

=

� 2

0

� 2π

0

� 1

0

2rz dr dφ dz = 2

� 2

0

z dz ·

� 2π

0

dφ ·

� 1

0

r dr = 4π.



Alternative evaluation of the triple integral:
Consider an invertible linear transformation L : R3 → R

3

given by L(x , y , z) = (−x ,−y , z). The matrix of L (relative
to the standard basis) is

M =





−1 0 0
0 −1 0
0 0 1



.

It is also the Jacobian matrix of L at every point. Changing
coordinates from (x , y , z) to (u, v ,w) so that
(x , y , z) = L(u, v ,w), we obtain
�

C

2(x + y ) dx dy dz =

�

L−1(C)

2(−u − v ) |detM | du dv dw

= −

�

C

2(u + v ) du dv dw .

It follows that

�

C

2(x + y ) dx dy dz = 0.



By linearity of the integral,
Æ

∂C

(x2e1 + y 2e2 + z2e3)·dS =

�

C

2(x + y + z) dx dy dz

=

�

C

2(x+y ) dx dy dz+

�

C

2z dx dy dz =

�

C

2z dx dy dz .

The cylinder C can be represented as C = U × [0, 2], where
U is the unit disc in the plane,

U = {(x , y ) ∈ R
2 : x2 + y 2 ≤ 1}.

By Fubini’s Theorem,
�

C

2z dx dy dz =

�

U

(
� 2

0

2z dz

)

dx dy

=

�

U

4 dx dy = 4 area(U) = 4π.



Problem 6 Let D be a region in R
3 bounded by a paraboloid

z = x2 + y 2 and a plane z = 9. Let S denote the part of the
paraboloid that bounds D, oriented by outward normals.
Evaluate a surface integral

�

S

curl(F) · dS,

where F(x , y , z) = (ex
2+z2 , xy + xz + yz , exyz).

We have curlF =
(∂F3

∂y
−

∂F2

∂z
,
∂F1

∂z
−

∂F3

∂x
,
∂F2

∂x
−

∂F1

∂y

)

= (xzexyz − x − y , 2zex
2+z2 − yzexyz , y + z).

Direct evaluation of the surface integral seems problematic.
By Stokes’ Theorem, the surface integral equals the integral of
the field F along the circle ∂S . However evaluation of this
line integral seems problematic as well.



By the corollary of Stokes’ Theorem,
�

∂D

curl(F)·dS = 0.

It follows that
�

S

curl(F)·dS = −

�

∂D\S

curl(F)·dS.

We observe that ∂D \ S is a horizontal disc Q×{9}, where
Q = {(x , y ) ∈ R

2 : x2 + y 2 ≤ 9}. It is oriented by the upward
normal vector n = (0, 0, 1). Now
�

∂D\S

curl(F)·dS =

�

∂D\S

curl(F)·n dS

=

�

Q

(y + 9) dx dy =

�

Q

9 dx dy = 9 area(Q) = 81π.

Thus

�

S

curl(F)·dS = −81π.


