
MATH 311

Topics in Applied Mathematics I

Lecture 38:

Review for the final exam.



Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear mapping.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1–5.6, 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Bases of eigenvectors, diagonalization

• Euclidean structure in Rn (length, angle, dot product)
• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process



Topics for the final exam: Part IV

Vector analysis (L/C 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral
• Geometric meaning of the determinant

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Problem. Consider a system of linear equations in
variables x , y , z :















x + 2y − z = 1,

2x + 3y + z = 3,
x + 3y + az = 0,

x + y + 2z = b.

Find values of parameters a and b for which the

system has infinitely many solutions, and solve the
system for these values.



To determine the number of solutions for the system, we
convert its augmented matrix to row echelon form using
elementary row operations:








1 2 −1 1
2 3 1 3
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 −1 3 b − 1











→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 0 0 b − 2









.

Now the augmented matrix is in row echelon form (except for
the case a = −4, b 6= 2 when one also needs to exchange the
last two rows).

If b 6= 2, then there is a leading entry in the rightmost
column, which indicates inconsistency.

In the case b = 2, the system is consistent. If, additionally,
a 6= −4 then there is a leading entry in each of the first three
columns, which implies uniqueness of the solution.

Thus the system has infinitely many solutions only if a = −4
and b = 2.



Thus the system has infinitely many solutions only if a = −4
and b = 2. To find the solutions, we proceed to reduced row
echelon form (for these particular values of parameters):









1 2 −1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









→









1 0 5 3
0 1 −3 −1
0 0 0 0
0 0 0 0









.

The latter matrix is the augmented matrix of the following
system of linear equations (which is equivalent to the given
one):

{

x + 5z = 3,
y − 3z = −1

⇐⇒

{

x = −5z + 3,
y = 3z − 1.

The general solution is (x , y , z) = (−5t + 3, 3t − 1, t)
= (3,−1, 0) + t(−5, 3, 1), t ∈ R.



Problem. Let V be the vector space spanned by

functions f1(x) = x sin x , f2(x) = x cos x ,
f3(x) = sin x , and f4(x) = cos x .

Consider the linear operator D : V → V ,
D = d/dx .

(a) Find the matrix A of the operator D relative to

the basis f1, f2, f3, f4.
(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable?



A is a 4×4 matrix whose columns are coordinates of
functions Dfi = f ′

i
relative to the basis f1, f2, f3, f4.

f ′
1
(x) = (x sin x)′ = x cos x + sin x = f2(x) + f3(x),

f ′
2
(x) = (x cos x)′ = −x sin x + cos x

= −f1(x) + f4(x),

f ′
3
(x) = (sin x)′ = cos x = f4(x),

f ′
4
(x) = (cos x)′ = − sin x = −f3(x).

Thus A =









0 −1 0 0
1 0 0 0
1 0 0 −1

0 1 1 0









.



Eigenvalues of A are roots of its characteristic

polynomial

det(A− λI ) =

∣

∣

∣
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∣

∣

∣

∣

−λ −1 0 0
1 −λ 0 0

1 0 −λ −1
0 1 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

Expand the determinant by the 1st row:

det(A− λI ) = −λ

∣
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0 −λ −1
1 1 −λ
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1 0 0

1 −λ −1
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∣

∣

∣

∣

∣
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= λ2(λ2+1)+(λ2+1) = (λ2+1)2 = (λ−i)2(λ+i)2.

The roots are i and −i , both of multiplicity 2.



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0, 0, i , 1) and the
eigenspace for −i is spanned by (0, 0,−i , 1). It follows that
the matrix A is not diagonalizable in the complex vector space
C4 (let alone real vector space R4).

There is also an indirect way to show that A is not
diagonalizable. Assume the contrary. Then A = UPU−1,
where U is an invertible matrix with complex entries and

P =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that P should have the same characteristic polynomial
as A). This would imply that A2 = UP2U−1. But P2 = −I
so that A2 = U(−I )U−1 = −I .

Let us check if A2 = −I .



A2 =









0 −1 0 0

1 0 0 0
1 0 0 −1

0 1 1 0









2

=









−1 0 0 0

0 −1 0 0
0 −2 −1 0

2 0 0 −1









.

Since A2 6= −I , we have a contradiction. Thus the

matrix A is not diagonalizable in C
4.



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2019 (L applied
2019 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =
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In particular, L(e1) =
(

0,−4

5
, 0
)

, L(e2) =
(

4

5
, 0, 3

5

)

,

L(e3) =
(
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5
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.



Therefore B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix B . It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix B ,

i.e., the solution set for the equation Bx = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →





1 0 3/4
0 1 0

0 0 0





=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix B :

det(B − λI ) =

∣

∣
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−λ 4/5 0
−4/5 −λ −3/5
0 3/5 −λ

∣
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∣

= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2019 is B2019.

Since the matrix B has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, B = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then B2019 = UD2019U−1. We have that D2019 =
= diag

(

0, i 2019, (−i)2019
)

= diag(0,−i , i) = −D.
Hence

B2019 = U(−D)U−1 = −B =





0 −0.8 0

0.8 0 0.6
0 −0.6 0



.


