
MATH 311

Topics in Applied Mathematics I

Lecture 39:
Review for the final exam (continued).



Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear mapping.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1–5.6, 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Bases of eigenvectors, diagonalization

• Euclidean structure in Rn (length, angle, dot product)
• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process



Topics for the final exam: Part IV

Vector analysis (L/C 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral
• Geometric meaning of the determinant

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2019 (L applied
2019 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
3/5 0 −4/5

x y z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −4/5

y z

∣

∣

∣

∣

e1 −
∣

∣

∣

∣

3/5 −4/5

x z

∣

∣

∣

∣

e2 +

∣

∣

∣

∣

3/5 0

x y

∣

∣

∣

∣

e3

= 4

5
ye1 −

(

4

5
x + 3

5
z
)

e2 +
3

5
ye3 =

(

4

5
y ,−4

5
x − 3

5
z , 3

5
y
)

.

In particular, L(e1) =
(

0,−4

5
, 0
)

, L(e2) =
(

4

5
, 0, 3

5

)

,

L(e3) =
(

0,−3

5
, 0
)

.



Therefore B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix B . It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix B ,

i.e., the solution set for the equation Bx = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →
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1 0 3/4
0 1 0

0 0 0
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=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix B :

det(B − λI ) =
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= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2019 is B2019.

Since the matrix B has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, B = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then B2019 = UD2019U−1. We have that D2019 =
= diag

(

0, i 2019, (−i)2019
)

= diag(0,−i , i) = −D.
Hence

B2019 = U(−D)U−1 = −B =





0 −0.8 0

0.8 0 0.6
0 −0.6 0



.



Problem. Find the distance from the point
y = (0, 0, 0, 1) to the subspace V ⊂ R4 spanned

by vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
and x3 = (−3, 7, 1, 3).

First we apply the Gram-Schmidt process to vectors x1, x2, x3
and obtain an orthogonal basis v1, v2, v3 for the subspace V .
Next we compute the orthogonal projection p of the vector y
onto V :

p =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 +
〈y, v3〉
〈v3, v3〉

v3.

Then the distance from y to V equals ‖y − p‖.

Alternatively, we can apply the Gram-Schmidt process to
vectors x1, x2, x3, y. We should obtain an orthogonal system
v1, v2, v3, v4. Then the desired distance will be ‖v4‖.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3)− −12

4
(1,−1, 1,−1)− 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check
linear independence of vectors! It failed because

the vector x3 is a linear combination of x1 and x2.
V is a plane, not a 3-dimensional subspace. To fix

things, it is enough to drop x3, i.e., we should
orthogonalize vectors x1, x2, y.

ṽ3 = y − 〈y, v1〉
〈v1, v1〉

v1 −
〈y, v2〉
〈v2, v2〉

v2

= (0, 0, 0, 1)− −1

4
(1,−1, 1,−1)− 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).
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