MATH 311
 Topics in Applied Mathematics I

Lecture 8:
Transpose of a matrix. Determinants.

Transpose of a matrix

Definition. Given a matrix A, the transpose of A, denoted A^{T}, is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A=\left(a_{i j}\right)$ then $A^{T}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$.

Examples. $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$,
$\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)^{T}=(7,8,9), \quad\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)^{T}=\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)$.

Properties of transposes:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(r A)^{T}=r A^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A_{1} A_{2} \ldots A_{k}\right)^{T}=A_{k}^{T} \ldots A_{2}^{T} A_{1}^{T}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Definition. A square matrix A is said to be symmetric if $A^{T}=A$.
For example, any diagonal matrix is symmetric.
Proposition For any square matrix A the matrices $B=A A^{T}$ and $C=A+A^{T}$ are symmetric.

Proof:

$$
\begin{gathered}
B^{T}=\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}=B \\
C^{T}=\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=C
\end{gathered}
$$

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, $\operatorname{det} A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| |
| ---: |
| |
| |
| |
| $-a_{11} a_{22} a_{22} a_{31}+a_{12} a_{23} a_{31}+a_{12} a_{21} a_{33}-a_{11} a_{32} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & \boxed{*}\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & \boxed{*} & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 2×2 matrices

$$
\begin{aligned}
& \left|\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right|=1, \quad\left|\begin{array}{rr}
3 & 0 \\
0 & -4
\end{array}\right|=-12, \\
& \left|\begin{array}{rr}
-2 & 5 \\
0 & 3
\end{array}\right|=-6, \quad\left|\begin{array}{ll}
7 & 0 \\
5 & 2
\end{array}\right|=14, \\
& \left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1, \quad\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|=0, \\
& \left|\begin{array}{rr}
-1 & 3 \\
-1 & 3
\end{array}\right|=0, \quad\left|\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right|=0 .
\end{aligned}
$$

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5, \\
& \left|\begin{array}{rrr}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0- \\
& -6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6 .
\end{aligned}
$$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants. Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have.
Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.

Axiomatic definition

$\mathcal{M}_{n, n}(\mathbb{R})$: the set of $n \times n$ matrices with real entries.
Theorem There exists a unique function $\operatorname{det}: \mathcal{M}_{n, n}(\mathbb{R}) \rightarrow \mathbb{R}$ (called the determinant) with the following properties:
(D1) if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
(D2) if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
(D3) if we interchange two rows of a matrix, the determinant changes its sign;
(D4) $\operatorname{det} I=1$.

Corollary 1 Suppose A is a square matrix and B is obtained from A applying elementary row operations. Then $\operatorname{det} A=0$ if and only if $\operatorname{det} B=0$.

Corollary 2 det $B=0$ whenever the matrix B has a zero row.

Hint: Multiply the zero row by the zero scalar.
Corollary $3 \operatorname{det} A=0$ if and only if the matrix A is not invertible.

Idea of the proof: Let B be the reduced row echelon form of A. If A is invertible then $B=I$; otherwise B has a zero row.

Remark. The same argument proves that properties (D1)-(D4) are enough to evaluate any determinant.

Row echelon form of a square matrix A :

$\operatorname{det} A \neq 0$

$\operatorname{det} A=0$

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
Earlier we have transformed the matrix A into the identity matrix using elementary row operations:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by -0.5 ,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by -0.4 ,
- add -1.5 times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \operatorname{det} A=$?
Earlier we have transformed the matrix A into the identity matrix using elementary row operations.
These included two row multiplications, by -0.5 and by -0.4 , and one row exchange.

It follows that

$$
\operatorname{det} I=-(-0.5)(-0.4) \operatorname{det} A=(-0.2) \operatorname{det} A \text {. }
$$

Hence $\operatorname{det} A=-5 \operatorname{det} I=-5$.

