Topics in Applied Mathematics I

MATH 311

Lecture 8: Transpose of a matrix. Determinants.

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^T , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^T = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
,

$$\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^T = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^T = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}.$$

Properties of transposes:

• $(A_1 A_2 ... A_k)^T = A_k^T ... A_2^T A_1^T$

$$\bullet \ (A^T)^T = A$$

$$\bullet (A \mid B)^T =$$

$$\bullet \ (A+B)^T = A^T + B^T$$

$$\bullet (A+B)' =$$

$$\bullet (rA)^T = rA^T$$

$$(A+D)$$
 –

• $(AB)^T = B^T A^T$

 \bullet $(A^{-1})^T = (A^T)^{-1}$

Definition. A square matrix A is said to be **symmetric** if $A^T = A$.

For example, any diagonal matrix is symmetric.

Proposition For any square matrix A the matrices $B = AA^T$ and $C = A + A^T$ are symmetric.

Proof.

$$B^{T} = (AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T} = B,$$
 $C^{T} = (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = C.$

$$C^T = (A + A^T)^T = A^T + (A^T)^T = A^T + A = C.$$

Determinants

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix $A = (a_{ij})_{1 \le i,j \le n}$ is denoted det A or

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Principal property: det $A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, det $A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition.
$$\det(a) = a$$
, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$.

$$+: \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}.$$

$$-: \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}, \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}.$$

Examples: 2×2 matrices

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1, \qquad \begin{vmatrix} 3 & 0 \\ 0 & -4 \end{vmatrix} = -12,$$

$$\begin{vmatrix} -2 & 5 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 14,$$

$$\begin{vmatrix} -2 & 5 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 7 & 0 \\ 5 & 2 \end{vmatrix} = 1$$
$$\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1, \qquad \begin{vmatrix} 0 & 0 \\ 4 & 1 \end{vmatrix} = 0,$$

$$\begin{vmatrix} 0 & 3 \\ 0 & 3 \end{vmatrix} = -6, \qquad \begin{vmatrix} 1 & 3 \\ 5 & 2 \end{vmatrix} = 3$$

$$\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1, \qquad \begin{vmatrix} 0 & 0 \\ 4 & 1 \end{vmatrix} = 0,$$

$$\begin{vmatrix} -1 & 3 \\ -1 & 3 \end{vmatrix} = 0, \qquad \begin{vmatrix} 2 & 1 \\ 8 & 4 \end{vmatrix} = 0.$$

Examples: 3×3 matrices

$$\begin{vmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{vmatrix} = 3 \cdot 0 \cdot 0 + (-2) \cdot 1 \cdot (-2) + 0 \cdot 1 \cdot 3 -$$
$$-0 \cdot 0 \cdot (-2) - (-2) \cdot 1 \cdot 0 - 3 \cdot 1 \cdot 3 = 4 - 9 = -5,$$

$$\begin{vmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 3 + 4 \cdot 5 \cdot 0 + 6 \cdot 0 \cdot 0 -$$

 $-6 \cdot 2 \cdot 0 - 4 \cdot 0 \cdot 3 - 1 \cdot 5 \cdot 0 = 1 \cdot 2 \cdot 3 = 6.$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants.

Approach 1 (original): an explicit (but very complicated) formula.

Approach 2 (axiomatic): we formulate properties that the determinant should have.

Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1)\times(n-1)$ matrices.

Axiomatic definition

 $\mathcal{M}_{n,n}(\mathbb{R})$: the set of $n \times n$ matrices with real entries.

Theorem There exists a unique function det : $\mathcal{M}_{n,n}(\mathbb{R}) \to \mathbb{R}$ (called the determinant) with the following properties:

- **(D1)** if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
- **(D2)** if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
- **(D3)** if we interchange two rows of a matrix, the determinant changes its sign;
 - **(D4)** $\det I = 1$.

Corollary 1 Suppose A is a square matrix and B is obtained from A applying elementary row operations. Then $\det A = 0$ if and only if $\det B = 0$.

Corollary 2 $\det B = 0$ whenever the matrix B has a zero row.

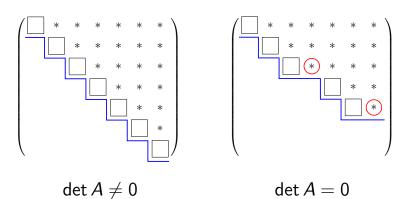
Hint: Multiply the zero row by the zero scalar.

Corollary 3 det A = 0 if and only if the matrix A is not invertible.

Idea of the proof: Let B be the reduced row echelon form of A. If A is invertible then B = I; otherwise B has a zero row.

Remark. The same argument proves that properties (D1)–(D4) are enough to evaluate any determinant.

Row echelon form of a square matrix A:



Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
, $\det A = ?$

Earlier we have transformed the matrix A into the identity matrix using elementary row operations:

- interchange the 1st row with the 2nd row,
- add −3 times the 1st row to the 2nd row.
- add 2 times the 1st row to the 3rd row,
- multiply the 2nd row by -0.5,
- add −3 times the 2nd row to the 3rd row,
- multiply the 3rd row by -0.4,
- add -1.5 times the 3rd row to the 2nd row.
- add -1 times the 3rd row to the 1st row.

Example.
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0 \end{pmatrix}$$
, $\det A = ?$

Earlier we have transformed the matrix A into the identity matrix using elementary row operations.

These included two row multiplications, by -0.5 and by -0.4, and one row exchange.

It follows that

$$\det I = -(-0.5)(-0.4) \det A = (-0.2) \det A.$$

Hence $\det A = -5 \det I = -5$.