MATH 311
Topics in Applied Mathematics I
Lecture 10:
Vector spaces.

Linear operations on vectors

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
Scalar multiple: $\quad r \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right)$
Zero vector: $\quad \mathbf{0}=(0,0, \ldots, 0)$
Negative of a vector: $\quad-\mathbf{y}=\left(-y_{1},-y_{2}, \ldots,-y_{n}\right)$
Vector difference:
$\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y})=\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{n}-y_{n}\right)$

Properties of linear operations

$$
\begin{aligned}
& \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} \\
& (\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z}) \\
& \mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x} \\
& \mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0} \\
& r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y} \\
& (r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x} \\
& (r s) \mathbf{x}=r(s \mathbf{x}) \\
& 1 \mathbf{x}=\mathbf{x} \\
& 0 \mathbf{x}=\mathbf{0} \\
& (-1) \mathbf{x}=-\mathbf{x}
\end{aligned}
$$

Linear operations on matrices

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices, and $r \in \mathbb{R}$ be a scalar.

Matrix sum: $\quad A+B=\left(a_{i j}+b_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$
Scalar multiple: $\quad r A=\left(r a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$
Zero matrix 0 : all entries are zeros
Negative of a matrix: $\quad-A=\left(-a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ Matrix difference: $\quad A-B=\left(a_{i j}-b_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$

As far as the linear operations are concerned, the $m \times n$ matrices have the same properties as $m n$-dimensional vectors.

Vector space: informal description

Vector space $=$ linear space $=$ a set V of objects (called vectors) that can be added and scaled.

That is, for any $\mathbf{u}, \mathbf{v} \in V$ and $r \in \mathbb{R}$ expressions

$$
\begin{array}{|l|l|}
\hline \mathbf{u}+\mathbf{v} & \text { and } \\
\hline
\end{array}
$$

should make sense.
Certain restrictions apply. For instance,

$$
\begin{aligned}
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \\
& 2 \mathbf{u}+3 \mathbf{u}=5 \mathbf{u}
\end{aligned}
$$

That is, addition and scalar multiplication in V should be like those of n-dimensional vectors.

Vector space: definition

Vector space is a set V equipped with two operations $\alpha: V \times V \rightarrow V$ and $\mu: \mathbb{R} \times V \rightarrow V$ that have certain properties (listed below).

The operation α is called addition. For any
$\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u}+\mathbf{v}$.
The operation μ is called scalar multiplication. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r \mathbf{u}$.

Properties of addition and scalar multiplication (brief)

A1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
A2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$
A3. $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$
A4. $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$
A5. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$
A6. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$
A7. $(r s) \mathbf{x}=r(s \mathbf{x})$
A8. $1 \mathbf{x}=\mathbf{x}$

Properties of addition and scalar multiplication (detailed)

A1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.
A2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
A3. There exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $x \in V$.
A4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$.
A5. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.
A6. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.
A7. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. A8. $\mathbf{1 x}=\mathbf{x}$ for all $\mathbf{x} \in V$.

- Associativity of addition implies that a multiple sum $\mathbf{u}_{1}+\mathbf{u}_{2}+\cdots+\mathbf{u}_{k}$ is well defined for any $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$.
- Subtraction in V is defined as follows:
$\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y})$.
- Addition and scalar multiplication are called linear operations.

Given $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in V$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$,

$$
r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}
$$

is called a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties A1-A8 are easy to verify.

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$

For any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ and $r \in \mathbb{R}$ let $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right), \quad r \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots\right)$. Then $\mathbf{0}=(0,0, \ldots)$ and $-\mathbf{x}=\left(-x_{1},-x_{2}, \ldots\right)$.

- $\{\mathbf{0}\}$: the trivial vector space

$$
\mathbf{0}+\mathbf{0}=\mathbf{0}, r \mathbf{0}=\mathbf{0}, \quad-\mathbf{0}=\mathbf{0} .
$$

Functional vector spaces

- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ Given functions $f, g \in F(\mathbb{R})$ and a scalar $r \in \mathbb{R}$, let $(f+g)(x)=f(x)+g(x)$ and $(r f)(x)=r f(x)$ for all $x \in \mathbb{R}$. Zero vector: $o(x)=0$. Negative: $(-f)(x)=-f(x)$.
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ Linear operations are inherited from $F(\mathbb{R})$. We only need to check that $f, g \in C(\mathbb{R}) \Longrightarrow f+g, r f \in C(\mathbb{R})$, the zero function is continuous, and $f \in C(\mathbb{R}) \Longrightarrow-f \in C(\mathbb{R})$.
- $C^{1}(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$

Some general observations

- The zero vector is unique.

Suppose \mathbf{z}_{1} and \mathbf{z}_{2} are zero vectors. Then $\mathbf{z}_{1}+\mathbf{z}_{2}=\mathbf{z}_{2}$ since \mathbf{z}_{1} is a zero vector and $\mathbf{z}_{1}+\mathbf{z}_{2}=\mathbf{z}_{1}$ since \mathbf{z}_{2} is a zero vector. Hence $\mathbf{z}_{1}=\mathbf{z}_{2}$.

- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

Suppose \mathbf{y} and \mathbf{y}^{\prime} are both negatives of \mathbf{x}. Let us compute the sum $\mathbf{y}^{\prime}+\mathbf{x}+\mathbf{y}$ in two ways:

$$
\begin{aligned}
\left(\mathbf{y}^{\prime}+\mathbf{x}\right)+\mathbf{y}=\mathbf{0}+\mathbf{y} & =\mathbf{y} \\
\mathbf{y}^{\prime}+(\mathbf{x}+\mathbf{y})=\mathbf{y}^{\prime}+\mathbf{0} & =\mathbf{y}^{\prime}
\end{aligned}
$$

By associativity of the vector addition, $\mathbf{y}=\mathbf{y}^{\prime}$.

Some general observations

- (cancellation law) $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ implies $\mathbf{x}=\mathbf{x}^{\prime}$ for any $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y} \in V$.
If $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ then $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})$. By associativity, $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\mathbf{x}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})=\mathbf{x}^{\prime}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}^{\prime}+\mathbf{0}=\mathbf{x}^{\prime}$. Hence $\mathbf{x}=\mathbf{x}^{\prime}$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.

Indeed, $0 \mathbf{x}+\mathbf{x}=0 \mathbf{x}+1 \mathbf{x}=(0+1) \mathbf{x}=1 \mathbf{x}=\mathbf{x}=\mathbf{0}+\mathbf{x}$.
By the cancellation law, $0 \mathbf{x}=\mathbf{0}$.

- $(-1) \mathbf{x}=-\mathbf{x}$ for any $\mathbf{x} \in V$.

Indeed, $\mathbf{x}+(-1) \mathbf{x}=(-1) \mathbf{x}+\mathbf{x}=(-1) \mathbf{x}+1 \mathbf{x}=(-1+1) \mathbf{x}$ $=0 x=0$.

