MATH 311
 Topics in Applied Mathematics I

Lecture 14e:
 Additional review for Test 1.

Vector space of infinite sequences

- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, x_{3}, \ldots\right), x_{n} \in \mathbb{R}$

To add two infinite sequences

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)
$$

we add their corresponding terms:

$$
\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, \ldots\right)
$$

To multiply a sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ by a scalar $r \in \mathbb{R}$, we multiply each term by that scalar: $r \mathbf{x}=\left(r x_{1}, r x_{2}, r x_{3}, \ldots\right)$.
The zero vector in this vector space is the sequence of all zeros: $\mathbf{0}=(0,0,0, \ldots)$. To get the negative of a sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$, we negate each term: $-\mathbf{x}=\left(-x_{1},-x_{2},-x_{3}, \ldots\right)$.

Problem. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

A subset of \mathbb{R}^{∞} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) S_{1} : sequences with infinitely many zero terms.
$\mathbf{0}=(0,0,0, \ldots) \in S_{1} \Longrightarrow S_{1}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ has infinitely many zero terms. Note that $x_{n}=0 \Longrightarrow r x_{n}=0$ for all $r \in \mathbb{R}$. Therefore any scalar multiple $r \mathbf{x}$ also has infinitely many zero terms. Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition. Counterexample:
$(1,0,1,0,1,0, \ldots)+(0,1,0,1,0,1, \ldots)=(1,1,1,1,1,1, \ldots)$.
Thus S_{1} is not a subspace of \mathbb{R}^{∞}.

Problem. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

A subset of \mathbb{R}^{∞} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) S_{2} : sequences with nonnegative terms.
$\mathbf{0}=(0,0,0, \ldots) \in S_{2} \Longrightarrow S_{2}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ have nonnegative terms. Then $x_{n}+y_{n} \geq 0+0=0$ for all n. Also, $r x_{n} \geq 0$ if $r \geq 0$. Hence $\mathbf{x}+\mathbf{y} \in S_{2}$ and $r \mathbf{x} \in S_{2}$ if $r \geq 0$.
That is, the set S_{2} is closed under addition and under multiplication by nonnegative scalars.
However S_{2} is not closed under multiplication by negative scalars. Counterexample:

$$
(-1)(1,1,1,1 \ldots)=(-1,-1,-1,-1 \ldots) .
$$

Thus S_{2} is not a subspace of \mathbb{R}^{∞}.

Problem. Determine which of the following

 subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.(iii) S_{3} : arithmetic progressions.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is an arithmetic progression if $x_{n+1}=x_{n}+d$ for some $d \in \mathbb{R}$ and all n.
$\mathbf{0}=(0,0,0, \ldots)$ is an arithmetic progression with common difference $d=0$. Hence $\mathbf{0} \in S_{3} \Longrightarrow S_{3}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ are arithmetic progressions. That is, $x_{n+1}=x_{n}+d$ and $y_{n+1}=y_{n}+d^{\prime}$ for some $d, d^{\prime} \in \mathbb{R}$ and all n. Then $x_{n+1}+y_{n+1}=\left(x_{n}+d\right)+\left(y_{n}+d^{\prime}\right)=\left(x_{n}+y_{n}\right)+\left(d+d^{\prime}\right)$ for all n so that $\mathbf{x}+\mathbf{y}$ is an arithmetic progression with common difference $d+d^{\prime}$. Also, $r x_{n+1}=r x_{n}+r d$ for any scalar r and all n. Hence $r \mathbf{x}$ is an arithmetic progression with common difference $r d$.
Therefore the set S_{3} is closed under addition and scalar multiplication. Thus S_{3} is a subspace of \mathbb{R}^{∞}.

Problem. Determine which of the following

 subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.(iv) S_{4} : geometric progressions.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a geometric progression if $x_{n+1}=x_{n} q$ for some $q \neq 0$ and all n.
$\mathbf{0}=(0,0,0, \ldots)$ is a geometric progression with common ratio $q=1$. Hence $\mathbf{0} \in S_{4} \Longrightarrow S_{4}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a geometric progression with common ratio q. Then $r x_{n+1}=r\left(x_{n} q\right)=\left(r x_{n}\right) q$ for any scalar r and all n. Hence $r \mathrm{x}$ is also a geometric progression with the same common ratio q. Therefore the set S_{4} is closed under scalar multiplication.
However S_{4} is not closed under addition. Counterexample: $(1,1,1, \ldots)+\left(2,4,8, \ldots, 2^{n}, \ldots\right)=\left(3,5,9, \ldots, 2^{n}+1, \ldots\right)$.
Thus S_{4} is not a subspace of \mathbb{R}^{∞}.

Problem. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.
(v) S_{5} : sequences of bounded variation.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is said to have bounded variation if the series $\sum_{n=1}^{\infty}\left|x_{n+1}-x_{n}\right|$ converges.
$\mathbf{0}=(0,0,0, \ldots)$ has variation $\sum_{n=1}^{\infty}|0-0|=0<\infty$. Hence $\mathbf{0} \in S_{5} \Longrightarrow S_{5}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ both have bounded variation. Since

$$
\left|\left(x_{n+1}+y_{n+1}\right)-\left(x_{n}+y_{n}\right)\right| \leq\left|x_{n+1}-x_{n}\right|+\left|y_{n+1}-y_{n}\right|
$$

for all n, we obtain $\sum_{n=1}^{\infty}\left|\left(x_{n+1}+y_{n+1}\right)-\left(x_{n}+y_{n}\right)\right| \leq$
$\sum_{n=1}^{\infty}\left|x_{n+1}-x_{n}\right|+\sum_{n=1}^{\infty}\left|y_{n+1}-y_{n}\right|<\infty$. Hence $\mathbf{x}+\mathbf{y} \in S_{5}$. Also, $\sum_{n=1}^{\infty}\left|r x_{n+1}-r x_{n}\right|=|r| \sum_{n=1}^{\infty}\left|x_{n+1}-x_{n}\right|<\infty$ for any scalar r so that $r \mathbf{x} \in S_{5}$.
Therefore the set S_{5} is closed under addition and scalar multiplication. Thus S_{5} is a subspace of \mathbb{R}^{∞}.

