MATH 311 Topics in Applied Mathematics I Lecture 14e: Additional review for Test 1.

Vector space of infinite sequences

• \mathbb{R}^{∞} : infinite sequences $(x_1, x_2, x_3, ...), x_n \in \mathbb{R}$ To add two infinite sequences

 $\mathbf{x} = (x_1, x_2, x_3, \dots)$ and $\mathbf{y} = (y_1, y_2, y_3, \dots)$, we add their corresponding terms:

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots).$$

To multiply a sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$ by a scalar $r \in \mathbb{R}$, we multiply each term by that scalar: $r\mathbf{x} = (rx_1, rx_2, rx_3, ...)$.

The zero vector in this vector space is the sequence of all zeros: $\mathbf{0} = (0, 0, 0, ...)$. To get the negative of a sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$, we negate each term: $-\mathbf{x} = (-x_1, -x_2, -x_3, ...)$.

A subset of \mathbb{R}^{∞} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(i) S_1 : sequences with infinitely many zero terms. $\mathbf{0} = (0, 0, 0, ...) \in S_1 \implies S_1$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ has infinitely many zero terms. Note that $x_n = 0 \implies rx_n = 0$ for all $r \in \mathbb{R}$. Therefore any scalar multiple $r\mathbf{x}$ also has infinitely many zero terms. Hence S_1 is closed under scalar multiplication. However S_1 is not closed under addition. Counterexample:

 $(1,0,1,0,\bar{1},0,\ldots) + (0,1,0,1,0,1,\ldots) = (1,1,1,1,1,\bar{1},\ldots).$

Thus S_1 is not a subspace of \mathbb{R}^{∞} .

A subset of \mathbb{R}^∞ is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(ii) S_2 : sequences with nonnegative terms. $\mathbf{0} = (0, 0, 0, ...) \in S_2 \implies S_2$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ and $\mathbf{y} = (y_1, y_2, y_3, ...)$ have nonnegative terms. Then $x_n + y_n \ge 0 + 0 = 0$ for all *n*. Also, $rx_n \ge 0$ if $r \ge 0$. Hence $\mathbf{x} + \mathbf{y} \in S_2$ and $r\mathbf{x} \in S_2$ if $r \ge 0$. That is, the set S_2 is closed under addition and under multiplication by nonnegative scalars.

However S_2 is not closed under multiplication by negative scalars. Counterexample:

$$(-1)(1, 1, 1, 1, \dots) = (-1, -1, -1, -1, \dots).$$

Thus S_2 is not a subspace of \mathbb{R}^{∞} .

(iii) S_3 : arithmetic progressions.

A sequence $\mathbf{x} = (x_1, x_2, x_3, \dots)$ is an arithmetic progression if $x_{n+1} = x_n + d$ for some $d \in \mathbb{R}$ and all n. $\mathbf{0} = (0, 0, 0, \dots)$ is an arithmetic progression with common difference d = 0. Hence $\mathbf{0} \in S_3 \implies S_3$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ and $\mathbf{y} = (y_1, y_2, y_3, ...)$ are arithmetic progressions. That is, $x_{n+1} = x_n + d$ and $y_{n+1} = y_n + d'$ for some $d, d' \in \mathbb{R}$ and all n. Then $x_{n+1} + y_{n+1} = (x_n + d) + (y_n + d') = (x_n + y_n) + (d + d')$ for all *n* so that $\mathbf{x} + \mathbf{y}$ is an arithmetic progression with common difference d + d'. Also, $rx_{n+1} = rx_n + rd$ for any scalar r and all *n*. Hence $r\mathbf{x}$ is an arithmetic progression with common difference rd.

Therefore the set S_3 is closed under addition and scalar multiplication. Thus S_3 is a subspace of \mathbb{R}^{∞} .

(iv) S_4 : geometric progressions.

A sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$ is a geometric progression if $x_{n+1} = x_n q$ for some $q \neq 0$ and all n. $\mathbf{0} = (0, 0, 0, ...)$ is a geometric progression with common ratio q = 1. Hence $\mathbf{0} \in S_4 \implies S_4$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ is a geometric progression with common ratio q. Then $rx_{n+1} = r(x_n q) = (rx_n)q$ for any scalar r and all n. Hence $r\mathbf{x}$ is also a geometric progression with the same common ratio q. Therefore the set S_4 is closed under scalar multiplication.

However S_4 is not closed under addition. Counterexample: $(1, 1, 1, ...) + (2, 4, 8, ..., 2^n, ...) = (3, 5, 9, ..., 2^n+1, ...).$ Thus S_4 is not a subspace of \mathbb{R}^{∞} .

(v) S_5 : sequences of bounded variation.

A sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$ is said to have bounded variation if the series $\sum_{n=1}^{\infty} |x_{n+1} - x_n|$ converges. $\mathbf{0} = (0, 0, 0, ...)$ has variation $\sum_{n=1}^{\infty} |0 - 0| = 0 < \infty$. Hence $\mathbf{0} \in S_5 \implies S_5$ is not empty.

Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ and $\mathbf{y} = (y_1, y_2, y_3, ...)$ both have bounded variation. Since

 $\begin{aligned} |(x_{n+1}+y_{n+1}) - (x_n+y_n)| &\leq |x_{n+1} - x_n| + |y_{n+1} - y_n| \\ \text{for all } n, \text{ we obtain } \sum_{n=1}^{\infty} |(x_{n+1}+y_{n+1}) - (x_n+y_n)| &\leq \\ \sum_{n=1}^{\infty} |x_{n+1} - x_n| + \sum_{n=1}^{\infty} |y_{n+1} - y_n| &< \infty. \text{ Hence } \mathbf{x} + \mathbf{y} \in S_5. \end{aligned}$ Also, $\sum_{n=1}^{\infty} |rx_{n+1} - rx_n| &= |r| \sum_{n=1}^{\infty} |x_{n+1} - x_n| < \infty \text{ for any scalar } r \text{ so that } r\mathbf{x} \in S_5. \end{aligned}$

Therefore the set S_5 is closed under addition and scalar multiplication. Thus S_5 is a subspace of \mathbb{R}^{∞} .