MATH 311

Topics in Applied Mathematics I

Lecture 14:

Review for Test 1.

Topics for Test 1

Part I: Elementary linear algebra (Leon/Colley 1.1–1.5, 2.1–2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
 - Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon/Colley 3.1–3.3)

- Definition of a vector space.
- Basic examples of vector spaces (coordinate vectors, matrices, polynomials, functional spaces).
 - Basic properties of vector spaces.
 - Subspaces of vector spaces.
 - Span, spanning set.
 - Linear independence.

Sample problems for Test 1

Problem 1 Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Problem 2 Let A be a square matrix such that $A^3 = O$.

- (i) Prove that the matrix A is not invertible.
- (ii) Prove that the matrix A + I is invertible.

Problem 3 Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

- (i) Evaluate the determinant of the matrix A.
- (ii) Find the inverse matrix A^{-1} .

Sample problems for Test 1

Problem 4 Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

- (i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.
- (ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0.
- (iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.
- (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 z^2 = 0$.

Problem 5 Let V denote the solution set of a system

$$\begin{cases} x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$$

Find a finite spanning set for this subspace of \mathbb{R}^4 .

Problem 6 Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Problem 1. Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Let
$$p(x) = a + bx + cx^2$$
. Then $p(1) = a + b + c$, $p(2) = a + 2b + 4c$, and $p(3) = a + 3b + 9c$.

The coefficients a, b, and c have to be chosen so that

$$\begin{cases} a+b+c=1, \\ a+2b+4c=3, \\ a+3b+9c=7. \end{cases}$$

We solve this system of linear equations using elementary operations:

$$\begin{cases} a+b+c=1 \\ a+2b+4c=3 \\ a+3b+9c=7 \end{cases} \iff \begin{cases} a+b+c=1 \\ b+3c=2 \\ a+3b+9c=7 \end{cases}$$

$$\iff \begin{cases} a+b+c=1\\ b+3c=2\\ a+3b+9c=7 \end{cases} \iff \begin{cases} a+b+c=1\\ b+3c=2\\ 2b+8c=6 \end{cases}$$

$$\iff \begin{cases} a+b+c=1\\ b+3c=2\\ b+4c=3 \end{cases} \iff \begin{cases} a+b+c=1\\ c=1 \end{cases}$$

Thus the desired polynomial is
$$p(x) = x^2 - x + 1$$
.

 $\iff \left\{ \begin{array}{l} a+b+c=1\\ b=-1\\ c=1 \end{array} \right. \iff \left\{ \begin{array}{l} a=1\\ b=-1\\ c=1 \end{array} \right.$

Problem 2. Let A be a square matrix such that $A^3 = O$

(i) Prove that the matrix A is not invertible.

The proof is by contradiction. Assume that A is invertible. Since any product of invertible matrices is also invertible, the matrix $A^3 = AAA$ should be invertible as well. However $A^3 = O$ is singular.

Problem 2. Let *A* be a square matrix such that $A^3 = O$

(ii) Prove that the matrix A + I is invertible.

It is enough to show that the equation $(A + I)\mathbf{x} = \mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors) has a unique solution $\mathbf{x} = \mathbf{0}$. Indeed, $(A + I)\mathbf{x} = \mathbf{0} \implies A\mathbf{x} + I\mathbf{x} = \mathbf{0} \implies A\mathbf{x} = -\mathbf{x}$.

Then $A^2\mathbf{x} = A(A\mathbf{x}) = A(-\mathbf{x}) = -A\mathbf{x} = -(-\mathbf{x}) = \mathbf{x}$.

Further, $A^3\mathbf{x} = A(A^2\mathbf{x}) = A\mathbf{x} = -\mathbf{x}$. On the other hand, $A^3\mathbf{x} = O\mathbf{x} = \mathbf{0}$. Hence $-\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$.

Alternatively, we can use equalities

$$X^3 + Y^3 = (X+Y)(X^2 - XY + Y^2) = (X^2 - XY + Y^2)(X+Y),$$

which hold whenever matrices X and Y commute: $XY = YX$.

In particular, they hold for X = A and Y = I. We obtain

$$(A+I)(A^2-A+I) = (A^2-A+I)(A+I) = A^3+I^3 = I$$

so that $(A+I)^{-1} = A^2-A+I$.

Problem 3. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix} .$$

Expand the determinant by the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix}.$$

Expand the determinant by the 3rd column:

$$(-1) \begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix} = (-1) \left(\begin{vmatrix} 2 & 3 \\ 2 & 0 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ 2 & 3 \end{vmatrix} \right) = -1.$$

Problem 3. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(ii) Find the inverse matrix A^{-1} .

First we merge the matrix \emph{A} with the identity matrix into one 4×8 matrix

$$(A \mid I) = \begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix. Subtract 2 times the 1st row from the 2nd row: $\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 \end{pmatrix}$

$$\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Subtract 2 times the 1st row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 1st row from the 4th row:

$$\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{pmatrix}$$

Subtract 2 times the 4th row from the 2nd row:

$$\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\
0 & 4 & -8 & -1 & -2 & 0 & 0 & 1
\end{pmatrix}$$

Subtract the 4th row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1 \end{pmatrix}$$

Add 4 times the 2nd row to the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & 6 & 4 & 0 & -7 \end{pmatrix}$$

Add 32 times the 3rd row to the 4th row:

$$\begin{pmatrix}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{pmatrix}$$

Multiply the 2nd, the 3rd, and the 4th rows by -1:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & -10 & 0 & -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

Subtract the 4th row from the 1st row:

$$\begin{pmatrix}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & 1 & -10 & 0 & -2 & -1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{pmatrix}$$

Add 10 times the 3rd row to the 2nd row:

$$\begin{pmatrix}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{pmatrix}$$

Subtract 4 times the 3rd row from the 1st row:

$$\begin{pmatrix}
1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{pmatrix}$$

Add 2 times the 2nd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix} = (I \mid A^{-1})$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

matrix of
$$A$$
. Thus
$$A^{-1} = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 & 16 & -19 \\ -2 & -1 & -10 & 12 \\ 0 & 0 & -1 & 1 \\ -6 & -4 & -32 & 39 \end{pmatrix}.$$

Problem 3. Let $A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$.

(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1.

It follows that $\det I = (-1)^3 \det A$.

$$\implies$$
 det $A = -\det I = -1$.

Problem 4. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.

$$(0,0,0)\in \mathcal{S}_1 \implies \mathcal{S}_1 \text{ is not empty.}$$

$$xyz = 0 \implies (rx)(ry)(rz) = r^3xyz = 0.$$

That is, $\mathbf{v} = (x, y, z) \in S_1 \implies r\mathbf{v} = (rx, ry, rz) \in S_1$.

Hence S_1 is closed under scalar multiplication.

However S_1 is not closed under addition.

Counterexample: (1,1,0) + (0,0,1) = (1,1,1).

Problem 4. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0.

$$(0,0,0) \in S_2 \implies S_2$$
 is not empty.

 $x + y + z = 0 \implies rx + ry + rz = r(x + y + z) = 0.$

Hence S_2 is closed under scalar multiplication. $x + v + z = x' + y' + z' = 0 \implies$

$$(x+x')+(y+y')+(z+z')=(x+y+z)+(x'+y'+z')=0.$$

That is,
$$\mathbf{v} = (x, y, z), \ \mathbf{v}' = (x', y', z') \in S_2$$

 $\implies \mathbf{v} + \mathbf{v}' = (x + x', y + y', z + z') \in S_2.$

Hence S_2 is closed under addition.

(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.

$$y^2 + z^2 = 0 \iff y = z = 0.$$

 \mathcal{S}_3 is a nonempty set closed under addition and scalar multiplication.

(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

 S_4 is a nonempty set closed under scalar multiplication. However S_4 is not closed under addition. Counterexample: (0,1,1)+(0,1,-1)=(0,2,0).

Problem 5. Let *V* denote the solution set of a system $\begin{cases} x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$

Find a finite spanning set for this subspace of \mathbb{R}^4 .

To find a spanning set, we need to solve the system. To this end, we subtract 2 times the 1st equation from the 2nd one, then switch the equations:

$$\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}$$

 x_3 and x_4 are free variables. General solution:

$$\begin{cases} x_1 = t + 2s \\ x_2 = -2t - 3s \\ x_3 = t \\ x_4 = s \end{cases} (t, s \in \mathbb{R})$$

In vector form, $(x_1, x_2, x_3, x_4) = t(1, -2, 1, 0) + s(2, -3, 0, 1)$. We conclude that the solution set is spanned by vectors (1, -2, 1, 0) and (2, -3, 0, 1).

Problem 6. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

The functions f_1, f_2, f_3 are linearly independent whenever the Wronskian $W[f_1, f_2, f_3]$ is not identically zero.

$$W[f_1, f_2, f_3](x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ f'_1(x) & f'_2(x) & f'_3(x) \\ f''_1(x) & f''_2(x) & f''_3(x) \end{vmatrix} = \begin{vmatrix} x & xe^x & e^{-x} \\ 1 & e^x + xe^x & -e^{-x} \\ 0 & 2e^x + xe^x & e^{-x} \end{vmatrix}$$
$$= e^{-x} \begin{vmatrix} x & xe^x & 1 \\ 1 & e^x + xe^x & -1 \\ 0 & 2e^x + xe^x & 1 \end{vmatrix} = \begin{vmatrix} x & x & 1 \\ 1 & 1 + x & -1 \\ 0 & 2 + x & 1 \end{vmatrix}$$

$$=x\begin{vmatrix} 1+x & -1 \\ 2+x & 1 \end{vmatrix} - \begin{vmatrix} x & 1 \\ 2+x & 1 \end{vmatrix} = x(2x+3)+2 = 2x^2+3x+2.$$

The polynomial $2x^2 + 3x + 2$ is never zero.

Problem 6. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $af_1(x)+bf_2(x)+cf_3(x)=0$ for all $x \in \mathbb{R}$, where a,b,c are constants. We have to show that a=b=c=0.

Let us differentiate this identity:

$$ax + bxe^{x} + ce^{-x} = 0,$$

 $a + be^{x} + bxe^{x} - ce^{-x} = 0,$
 $2be^{x} + bxe^{x} + ce^{-x} = 0,$
 $3be^{x} + bxe^{x} - ce^{-x} = 0,$
 $4be^{x} + bxe^{x} + ce^{-x} = 0.$

(the 5th identity)—(the 3rd identity): $2be^x = 0 \implies b = 0$. Substitute b = 0 in the 3rd identity: $ce^{-x} = 0 \implies c = 0$. Substitute b = c = 0 in the 2nd identity: a = 0.

Problem 6. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $ax + bxe^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

For any $x \neq 0$ divide both sides of the identity by xe^x :

$$ae^{-x} + b + cx^{-1}e^{-2x} = 0.$$

The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a + cx^{-1}e^{-x} = 0.$$

The left-hand side approaches a as $x \to +\infty$. $\Longrightarrow a = 0$

Now $ce^{-x} = 0 \implies c = 0$.