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Spanning set

Let S be a subset of a vector space V .

Definition. The span of the set S is the smallest

subspace W ⊂ V that contains S . If S is not
empty then W = Span(S) consists of all linear
combinations r1v1 + r2v2 + · · ·+ rkvk such that

v1, . . . , vk ∈ S and r1, . . . , rk ∈ R.

We say that the set S spans the subspace W or

that S is a spanning set for W .

Remarks. • If S1 is a spanning set for a vector space V and
S1 ⊂ S2 ⊂ V , then S2 is also a spanning set for V .
• If v0, v1, . . . , vk is a spanning set for V and v0 is a linear
combination of vectors v1, . . . , vk then v1, . . . , vk is also a
spanning set for V .



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent if they
satisfy a relation

r1v1 + r2v2 + · · ·+ rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all equal to zero.
Otherwise the vectors v1, v2, . . . , vk are called linearly
independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find some
distinct linearly dependent vectors v1, . . . , vk in S . Otherwise
S is linearly independent.

Theorem Vectors v1, . . . , vk ∈ V are linearly dependent if
and only if one of them is a linear combination of the other
k − 1 vectors.



Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V is called a basis.

Suppose that a set S ⊂ V is a basis for V .

“Spanning set” means that any vector v ∈ V can be
represented as a linear combination

v = r1v1 + r2v2 + · · ·+ rkvk ,

where v1, . . . , vk are distinct vectors from S and
r1, . . . , rk ∈ R. “Linearly independent” implies that the above
representation is unique:

v = r1v1 + r2v2 + · · ·+ rkvk = r ′
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Examples. • Standard basis for Rn:
e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,

en = (0, 0, 0, . . . , 0, 1).
Indeed, (x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen.

• Matrices
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form a basis for M2,2(R).
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• Polynomials 1, x , x2, . . . , xn−1 form a basis for

Pn = {a0 + a1x + · · ·+ an−1x
n−1 : ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis

for P , the space of all polynomials.



Let v, v1, v2, . . . , vk ∈ R
n and r1, r2, . . . , rk ∈ R.

The vector equation r1v1+r2v2+ · · ·+rkvk = v is
equivalent to the matrix equation Ax = v, where

A = (v1, v2, . . . , vk), x =
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⇐⇒ Ax = v



Let v, v1, v2, . . . , vk ∈ R
n and r1, r2, . . . , rk ∈ R.

The vector equation r1v1+r2v2+ · · ·+rkvk = v is
equivalent to the matrix equation Ax = v, where

A = (v1, v2, . . . , vk), x =





r1
...
rk



.

That is, A is the n×k matrix such that vectors v1, v2, . . . , vk
are consecutive columns of A.

• Vectors v1, . . . , vk span R
n if the row echelon

form of A has no zero rows.

• Vectors v1, . . . , vk are linearly independent if
the row echelon form of A has a leading entry in
each column (no free variables).
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Bases for Rn

Let v1, v2, . . . , vk be vectors in R
n.

Theorem 1 If k < n then the vectors
v1, v2, . . . , vk do not span R

n.

Theorem 2 If k > n then the vectors

v1, v2, . . . , vk are linearly dependent.

Theorem 3 If k = n then the following conditions
are equivalent:

(i) {v1, v2, . . . , vn} is a basis for Rn;
(ii) {v1, v2, . . . , vn} is a spanning set for Rn;
(iii) {v1, v2, . . . , vn} is a linearly independent set.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Vectors v1 and v2 are linearly independent (as they

are not parallel), but they do not span R
3.

Vectors v1, v2, v3 are linearly independent since
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= −(−2) = 2 6= 0.

Therefore {v1, v2, v3} is a basis for R3.

Vectors v1, v2, v3, v4 span R
3 (because v1, v2, v3

already span R
3), but they are linearly dependent.



Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis,

then all bases for V are finite and have the same
number of elements.

Definition. The dimension of a vector space V ,

denoted dimV , is the number of elements in any of
its bases.



Examples. • dimR
n = n

• M2,2(R): the space of 2×2 matrices
dimM2,2(R) = 4

• Mm,n(R): the space of m×n matrices

dimMm,n(R) = mn

• Pn: polynomials of degree less than n
dimPn = n

• P : the space of all polynomials
dimP = ∞

• {0}: the trivial vector space

dim {0} = 0



Problem. Find the dimension of the plane

x + 2z = 0 in R
3.

The general solution of the equation x + 2z = 0 is






x = −2s
y = t

z = s

(t, s ∈ R)

That is, (x , y , z) = (−2s, t, s) = t(0, 1, 0) + s(−2, 0, 1).

Hence the plane is the span of vectors v1 = (0, 1, 0)
and v2 = (−2, 0, 1). These vectors are linearly

independent as they are not parallel.

Thus {v1, v2} is a basis so that the dimension of
the plane is 2.



How to find a basis?

Theorem Let S be a subset of a vector space V .
Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V ,

i.e., a basis;

(ii) S is a minimal spanning set for V ;

(iii) S is a maximal linearly independent subset of V .

“Minimal spanning set” means “remove any element from this
set, and it is no longer a spanning set”.

“Maximal linearly independent subset” means “add any
element of V to this set, and it will become linearly
dependent”.



Theorem Let V be a vector space. Then

(i) any spanning set for V can be reduced to a
minimal spanning set;

(ii) any linearly independent subset of V can be

extended to a maximal linearly independent set.

Corollary 1 Any spanning set contains a basis
while any linearly independent set is contained in a

basis.

Corollary 2 A vector space is finite-dimensional if
and only if it is spanned by a finite set.



How to find a basis?

Approach 1. Get a spanning set for the vector

space, then reduce this set to a basis dropping one
vector at a time.

Proposition Let v0, v1, . . . , vk be a spanning set

for a vector space V . If v0 is a linear combination
of vectors v1, . . . , vk then v1, . . . , vk is also a
spanning set for V .

Indeed, if v0 = r1v1 + · · ·+ rkvk , then

t0v0 + t1v1 + · · ·+ tkvk =

= (t0r1 + t1)v1 + · · ·+ (t0rk + tk)vk .



How to find a basis?

Approach 2. Build a maximal linearly independent
set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If
V 6= {0}, pick any vector v1 6= 0. If v1 spans V , it is a
basis. Otherwise pick any vector v2 ∈ V that is not in the
span of v1. If v1 and v2 span V , they constitute a basis.
Otherwise pick any vector v3 ∈ V that is not in the span of
v1 and v2. And so on. . .

Modifications. Instead of the empty set, we can start with any
linearly independent set (if we are given one). If we are given
a spanning set S , it is enough to pick new vectors only in S .

Remark. This inductive procedure works for finite-dimensional
vector spaces. There is an analogous procedure for
infinite-dimensional spaces (transfinite induction).


