MATH 311
Topics in Applied Mathematics I
Lecture 20:
Matrix transformations. Matrix of a linear transformation.

## Matrix transformations

Any $m \times n$ matrix $A$ gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for $\mathbb{R}^{3}$. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)$, $L\left(\mathbf{e}_{2}\right)=(0,4,5), \quad L\left(\mathbf{e}_{3}\right)=(2,7,8)$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for $\mathbb{R}^{3}$.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix $A$ such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Columns of $A$ are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for $\mathbb{R}^{n}$.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

## Change of coordinates (revisited)

Let $V$ be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for $V$ and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for $V$ and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.


The composition $g_{2} \circ g_{1}^{-1}$ is a linear mapping of $\mathbb{R}^{n}$ to itself. Hence it's represented as $\mathbf{x} \mapsto U \mathbf{x}$, where $U$ is an $n \times n$ matrix.
$U$ is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of $U$ are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

## Matrix of a linear transformation

Let $V, W$ be vector spaces and $f: V \rightarrow W$ be a linear map.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for $V$ and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for $W$ and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.


The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$. Hence it's represented as $\mathbf{x} \mapsto A \mathbf{x}$, where $A$ is an $m \times n$ matrix.
$A$ is called the matrix of $f$ with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of $A$ are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Examples. - $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}, \quad(D p)(x)=p^{\prime}(x)$.
Let $A_{D}$ be the matrix of $D$ with respect to the bases $1, x, x^{2}$ and $1, x$. Columns of $A_{D}$ are coordinates of polynomials $D 1, D x, D x^{2}$ w.r.t. the basis $1, x$.
$D 1=0, D x=1, D x^{2}=2 x \Longrightarrow A_{D}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$

- $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}, \quad(L p)(x)=p(x+1)$.

Let $A_{L}$ be the matrix of $L$ w.r.t. the basis $1, x, x^{2}$. $L 1=1, L x=1+x, L x^{2}=(x+1)^{2}=1+2 x+x^{2}$.
$\Longrightarrow A_{L}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

