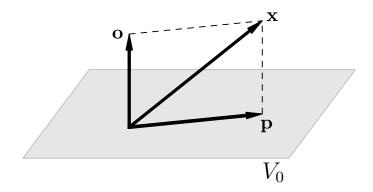
MATH 311 Topics in Applied Mathematics I Lecture 30a: The Gram-Schmidt process.

Orthogonal projection



Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

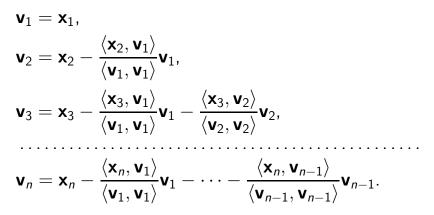
The component **p** is the **orthogonal projection** of the vector **x** onto the subspace V_0 . The distance from **x** to the subspace V_0 equals $||\mathbf{o}||$.

If
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal basis for V_0 then

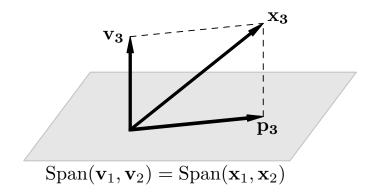
$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

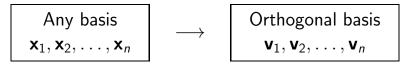
The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let



Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.





Properties of the Gram-Schmidt process:

•
$$\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$$

• the span of $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \ldots, \mathbf{x}_k$;

• \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for an inner product space V. Let

 $v_1 = x_1, \quad w_1 = \frac{v_1}{\|v_1\|},$ $\mathbf{v}_2 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1
angle \mathbf{w}_1$, $\mathbf{w}_2 = rac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{v}_3 = \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1
angle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2
angle \mathbf{w}_2$, $\mathbf{w}_3 = rac{\mathbf{v}_3}{\|\mathbf{v}_3\|}$, $\mathbf{v}_n = \mathbf{x}_n - \langle \mathbf{x}_n, \mathbf{w}_1 \rangle \mathbf{w}_1 - \cdots - \langle \mathbf{x}_n, \mathbf{w}_{n-1} \rangle \mathbf{w}_{n-1},$ $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}.$ Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V. **Problem.** Let Π be the plane spanned by vectors $\mathbf{x}_1 = (1, 1, 0)$ and $\mathbf{x}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{y} = (4, 0, -1)$ onto the plane Π . (ii) Find the distance from \mathbf{y} to Π .

First we apply the Gram-Schmidt process to the basis $\mathbf{x}_1, \mathbf{x}_2$: $\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 0),$ $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (0, 1, 1) - \frac{1}{2}(1, 1, 0) = (-1/2, 1/2, 1).$

Now that $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π , the orthogonal projection of \mathbf{y} onto Π is

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 = \frac{4}{2} (1, 1, 0) + \frac{-3}{3/2} (-1/2, 1/2, 1)$$
$$= (2, 2, 0) + (1, -1, -2) = (3, 1, -2).$$

The distance from \mathbf{y} to Π is $\|\mathbf{y} - \mathbf{p}\| = \|(1, -1, 1)\| = \sqrt{3}$.

Problem. Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f - p\|_{\infty} = \max_{|x| \le 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a **"least** squares" approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g,h\rangle = \int_{-1}^1 g(x)h(x)\,dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$