MATH 311
Topics in Applied Mathematics I

Lecture 33:
 Review of integral calculus (continued). Area and volume.

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed interval $[a, b]$ and f is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x=\int_{a}^{b} f(\phi(x)) d \phi(x) .
$$

Remarks. - The Leibniz differential $d \phi$ of the function ϕ is defined by $d \phi(x)=\phi^{\prime}(x) d x=\frac{d \phi}{d x} d x$.

- It is possible that $\phi(a) \geq \phi(b)$. Hence we set

$$
\int_{c}^{d} f(t) d t=-\int_{d}^{c} f(t) d t
$$

if $c>d$. Also, we set the integral to be 0 if $c=d$.

- $t=\phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Problem. Evaluate $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$.
To integrate this function, we introduce a new variable $u=1-x^{2}$:

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{\left(1-x^{2}\right)^{\prime}}{\sqrt{1-x^{2}}} d x \\
=-\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right)=-\frac{1}{2} \int_{1}^{3 / 4} \frac{1}{\sqrt{u}} d u \\
=\int_{3 / 4}^{1} \frac{1}{2 \sqrt{u}} d u=\left.\sqrt{u}\right|_{u=3 / 4} ^{1}=1-\frac{\sqrt{3}}{2} .
\end{gathered}
$$

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have measure zero if for any $\varepsilon>0$ the set E can be covered by a sequence of open intervals J_{1}, J_{2}, \ldots such that $\sum_{n=1}^{\infty}\left|J_{n}\right|<\varepsilon$.

Examples. - Any set E that can be represented as a sequence x_{1}, x_{2}, \ldots (such sets are called countable) has measure zero. Indeed, for any $\varepsilon>0$, let

$$
J_{n}=\left(x_{n}-\frac{\varepsilon}{2^{n+1}}, x_{n}+\frac{\varepsilon}{2^{n+1}}\right), \quad n=1,2, \ldots
$$

Then $E \subset J_{1} \cup J_{2} \cup \ldots$ and $\left|J_{n}\right|=\varepsilon / 2^{n}$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty}\left|J_{n}\right|=\varepsilon$.

- The set \mathbb{Q} of rational numbers has measure zero (since it is countable).
- Nondegenerate interval $[a, b]$ is not a set of measure zero.

Lebesgue's criterion for Riemann integrability

Definition. Suppose $P(x)$ is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that $P(x)$ holds for almost all $x \in S$ (or almost everywhere on $S)$ if the set $\{x \in S \mid P(x)$ does not hold $\}$ has measure zero.

Theorem A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$ if and only if f is bounded on $[a, b]$ and continuous almost everywhere on $[a, b]$.

Let \mathcal{P} be the smallest collection of subsets of \mathbb{R}^{2} such that it contains all polygons and if $X, Y \in \mathcal{P}$, then $X \cup Y, X \cap Y, X \backslash Y \in \mathcal{P}$.
Theorem There exists a unique function $\mu: \mathcal{P} \rightarrow \mathbb{R}$ (called the area function) that satisfies the following conditions:

- (positivity) $\mu(X) \geq 0$ for all $X \in \mathcal{P}$;
- (additivity) $\mu(X \cup Y)=\mu(X)+\mu(Y)$ if $X \cap Y=\emptyset$;
- (translation invariance) $\mu(X+\mathbf{v})=\mu(X)$ for all $X \in \mathcal{P}$ and $\mathbf{v} \in \mathbb{R}^{2}$;
- $\mu(Q)=1$, where $Q=[0,1] \times[0,1]$ is the unit square.

The area function satisfies an extra condition:

- (monotonicity) $\mu(X) \leq \mu(Y)$ whenever $X \subset Y$.

Now for any bounded set $X \subset \mathbb{R}^{2}$ we let $\bar{\mu}(X)=\inf _{X \subset Y} \mu(Y)$ and $\underline{\mu}(X)=\sup _{Z \subset X} \mu(Z)$. Note that $\underline{\mu}(X) \leq \bar{\mu}(X)$. In the case of equality, the set X is called Jordan measurable and we let $\operatorname{area}(X)=\bar{\mu}(X)$.

Area, volume, and determinants

- 2×2 determinants and plane geometry Let P be a parallelogram in the plane \mathbb{R}^{2}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are represented by adjacent sides of P. Then $\operatorname{area}(P)=|\operatorname{det} A|$, where $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, a matrix whose columns are \mathbf{v}_{1} and \mathbf{v}_{2}.
Consider a linear operator $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(\mathbf{v})=A \mathbf{v}$ for any column vector \mathbf{v}. Then $\operatorname{area}\left(L_{A}(D)\right)=|\operatorname{det} A| \operatorname{area}(D)$ for any bounded domain D.
- 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^{3}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are represented by adjacent edges of Π. Then volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, a matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
Similarly, volume $\left(L_{B}(D)\right)=|\operatorname{det} B| \operatorname{volume}(D)$ for any bounded domain $D \subset \mathbb{R}^{3}$.

volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Note that the parallelepiped Π is the image under L_{B} of a unit cube whose adjacent edges are $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.
The triple $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the right-hand rule. We say that L_{B} preserves orientation if it preserves the hand rule for any basis. This is the case if and only if $\operatorname{det} B>0$.

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R=[a, b] \times[c, d] \subset \mathbb{R}^{2}$.
Definition. A Riemann sum of a function $f: R \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ of R generated by samples $t_{j} \in D_{j}$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right) \operatorname{area}\left(D_{j}\right)
$$

The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n} \operatorname{diam}\left(D_{j}\right)$.
Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on R and the limit $I(f)$ is called the integral of f over R.

Double integral

Closed coordinate rectangle $R=[a, b] \times[c, d]$
$=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, \quad c \leq y \leq d\right\}$.
Notation: $\iint_{R} f d A$ or $\iint_{R} f(x, y) d x d y$.
Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f: R \rightarrow \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y .
$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on $[a, b]$ and a function h is integrable on $[c, d]$, then the function $f(x, y)=g(x) h(y)$ is integrable on $R=[a, b] \times[c, d]$ and

$$
\iint_{R} g(x) h(y) d x d y=\int_{a}^{b} g(x) d x \cdot \int_{c}^{d} h(y) d y .
$$

Integrals over general domains

Suppose $f: D \rightarrow \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^{2}$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R :

$$
f^{\mathrm{ext}}(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \in D \\
0 & \text { if }(x, y) \notin D
\end{array}\right.
$$

Definition. $\iint_{D} f d A$ is defined to be $\iint_{R} f^{\mathrm{ext}} d A$.
In particular, $\operatorname{area}(D)=\iint_{D} 1 d A$.

