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Lecture 33:

Review of integral calculus (continued).
Area and volume.



Change of the variable in an integral

Theorem If φ is continuously differentiable on a closed
interval [a, b] and f is continuous on φ([a, b]), then
∫ φ(b)

φ(a)

f (t) dt =

∫ b

a

f (φ(x))φ′(x) dx =

∫ b

a

f (φ(x)) dφ(x).

Remarks. • The Leibniz differential dφ of the function φ is
defined by dφ(x) = φ′(x) dx = dφ

dx
dx .

• It is possible that φ(a) ≥ φ(b). Hence we set
∫ d

c

f (t) dt = −
∫ c

d

f (t) dt

if c > d . Also, we set the integral to be 0 if c = d .

• t = φ(x) is a proper change of the variable only if the
function φ is strictly monotone. However the theorem holds
even without this assumption.



Problem. Evaluate

∫

1/2

0

x√
1− x2

dx .

To integrate this function, we introduce a new

variable u = 1− x2:
∫

1/2

0

x√
1− x2

dx = −1

2

∫

1/2

0

(1− x2)′√
1− x2

dx

= −1

2

∫

1/2

0

1√
1− x2

d(1− x2) = −1

2

∫

3/4

1

1√
u
du

=

∫

1

3/4

1

2
√
u
du =

√
u
∣

∣

1

u=3/4
= 1−

√
3

2
.



Sets of measure zero

Definition. A subset E of the real line R is said to have
measure zero if for any ε > 0 the set E can be covered by a
sequence of open intervals J1, J2, . . . such that
∑∞

n=1 |Jn| < ε.

Examples. • Any set E that can be represented as a sequence
x1, x2, . . . (such sets are called countable) has measure zero.

Indeed, for any ε > 0, let

Jn =
(

xn −
ε

2n+1
, xn +

ε

2n+1

)

, n = 1, 2, . . .

Then E ⊂ J1 ∪ J2 ∪ . . . and |Jn| = ε/2n for all n ∈ N so
that

∑∞

n=1 |Jn| = ε.

• The set Q of rational numbers has measure zero (since it is
countable).

• Nondegenerate interval [a, b] is not a set of measure zero.



Lebesgue’s criterion for Riemann integrability

Definition. Suppose P(x) is a property depending
on x ∈ S , where S ⊂ R. We say that P(x) holds

for almost all x ∈ S (or almost everywhere on
S) if the set {x ∈ S | P(x) does not hold } has

measure zero.

Theorem A function f : [a, b] → R is Riemann
integrable on the interval [a, b] if and only if f is
bounded on [a, b] and continuous almost

everywhere on [a, b].



Let P be the smallest collection of subsets of R2 such that it
contains all polygons and if X ,Y ∈ P, then
X ∪ Y , X ∩ Y , X \ Y ∈ P.

Theorem There exists a unique function µ : P → R (called
the area function) that satisfies the following conditions:
• (positivity) µ(X ) ≥ 0 for all X ∈ P;
• (additivity) µ(X ∪ Y ) = µ(X ) + µ(Y ) if X ∩ Y = ∅;
• (translation invariance) µ(X + v) = µ(X ) for all X ∈ P
and v ∈ R2;
• µ(Q) = 1, where Q = [0, 1]× [0, 1] is the unit square.

The area function satisfies an extra condition:
• (monotonicity) µ(X ) ≤ µ(Y ) whenever X ⊂ Y .

Now for any bounded set X ⊂ R2 we let µ(X ) = inf
X⊂Y

µ(Y )

and µ(X ) = sup
Z⊂X

µ(Z ). Note that µ(X ) ≤ µ(X ). In the

case of equality, the set X is called Jordan measurable and
we let area(X ) = µ(X ).



Area, volume, and determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R2. Suppose that
vectors v1, v2 ∈ R2 are represented by adjacent sides of P.
Then area(P) = |detA|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R2 → R2 given by
LA(v) = Av for any column vector v. Then
area(LA(D)) = |detA| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R3. Suppose that vectors
v1, v2, v3 ∈ R3 are represented by adjacent edges of Π. Then
volume(Π) = |detB |, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |detB | volume(D) for any
bounded domain D ⊂ R3.



v1

v2
v3

volume(Π) = |detB |, where B = (v1, v2, v3). Note that the
parallelepiped Π is the image under LB of a unit cube whose
adjacent edges are e1, e2, e3.

The triple v1, v2, v3 obeys the right-hand rule. We say that
LB preserves orientation if it preserves the hand rule for any
basis. This is the case if and only if detB > 0.



Riemann sums in two dimensions

Consider a closed coordinate rectangle
R = [a, b]× [c, d ] ⊂ R2.

Definition. A Riemann sum of a function f : R → R with
respect to a partition P = {D1,D2, . . . ,Dn} of R generated
by samples tj ∈ Dj is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) area(Dj).

The norm of the partition P is ‖P‖ = max1≤j≤n diam(Dj).

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
R and the limit I (f ) is called the integral of f over R .



Double integral

Closed coordinate rectangle R = [a, b]× [c , d ]

= {(x , y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}.

Notation:

∫∫

R

f dA or

∫∫

R

f (x , y) dx dy .

Theorem 1 If f is continuous on the closed
rectangle R, then f is integrable.

Theorem 2 A function f : R → R is Riemann

integrable on the rectangle R if and only if f is
bounded on R and continuous almost everywhere on
R (that is, the set of discontinuities of f has zero

area).



Fubini’s Theorem

Fubini’s Theorem allows us to reduce a multiple integral to a
repeated one-dimensional integral.

Theorem If a function f is integrable on R = [a, b]× [c, d ],
then
∫∫

R

f dA =

∫ b

a

(

∫ d

c

f (x , y ) dy
)

dx =

∫ d

c

(

∫ b

a

f (x , y ) dx
)

dy .

In particular, this implies that we can change the order of
integration in a repeated integral.

Corollary If a function g is integrable on [a, b] and a
function h is integrable on [c, d ], then the function
f (x , y ) = g(x)h(y ) is integrable on R = [a, b]× [c, d ] and

∫∫

R

g(x)h(y ) dx dy =

∫ b

a

g(x) dx ·
∫ d

c

h(y ) dy .



Integrals over general domains

Suppose f : D → R is a function defined on a
(Jordan) measurable set D ⊂ R2. Since D is

bounded, it is contained in a rectangle R. To
define the integral of f over D, we extend the

function f to a function on R:

f ext(x , y) =

{

f (x , y) if (x , y) ∈ D,
0 if (x , y) /∈ D.

Definition.

∫∫

D

f dA is defined to be

∫∫

R

f ext dA.

In particular, area(D) =

∫∫

D

1 dA.


