MATH 311 Topics in Applied Mathematics I Lecture 33: Review of integral calculus (continued). Area and volume.

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed interval [a, b] and f is continuous on $\phi([a, b])$, then

$$\int_{\phi(a)}^{\phi(b)} f(t) dt = \int_a^b f(\phi(x)) \phi'(x) dx = \int_a^b f(\phi(x)) d\phi(x).$$

Remarks. • The Leibniz differential $d\phi$ of the function ϕ is defined by $d\phi(x) = \phi'(x) dx = \frac{d\phi}{dx} dx$.

• It is possible that $\phi(a) \geq \phi(b)$. Hence we set

$$\int_c^d f(t) \, dt = - \int_d^c f(t) \, dt$$

if c > d. Also, we set the integral to be 0 if c = d.

• $t = \phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Problem. Evaluate
$$\int_0^{1/2} \frac{x}{\sqrt{1-x^2}} dx$$
.

To integrate this function, we introduce a new variable $u = 1 - x^2$:

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have **measure zero** if for any $\varepsilon > 0$ the set E can be covered by a sequence of open intervals J_1, J_2, \ldots such that $\sum_{n=1}^{\infty} |J_n| < \varepsilon$.

Examples. • Any set *E* that can be represented as a sequence x_1, x_2, \ldots (such sets are called **countable**) has measure zero. Indeed, for any $\varepsilon > 0$, let

$$J_n = \left(x_n - \frac{\varepsilon}{2^{n+1}}, x_n + \frac{\varepsilon}{2^{n+1}}\right), \quad n = 1, 2, \dots$$

Then $E \subset J_1 \cup J_2 \cup \ldots$ and $|J_n| = \varepsilon/2^n$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty} |J_n| = \varepsilon$.

• The set ${\mathbb Q}$ of rational numbers has measure zero (since it is countable).

• Nondegenerate interval [a, b] is not a set of measure zero.

Lebesgue's criterion for Riemann integrability

Definition. Suppose P(x) is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that P(x) holds for **almost all** $x \in S$ (or **almost everywhere** on S) if the set $\{x \in S \mid P(x) \text{ does not hold }\}$ has measure zero.

Theorem A function $f : [a, b] \to \mathbb{R}$ is Riemann integrable on the interval [a, b] if and only if f is bounded on [a, b] and continuous almost everywhere on [a, b].

Let \mathcal{P} be the smallest collection of subsets of \mathbb{R}^2 such that it contains all polygons and if $X, Y \in \mathcal{P}$, then $X \cup Y, X \cap Y, X \setminus Y \in \mathcal{P}$.

Theorem There exists a unique function $\mu : \mathcal{P} \to \mathbb{R}$ (called the **area function**) that satisfies the following conditions:

- (positivity) $\mu(X) \ge 0$ for all $X \in \mathcal{P}$;
- (additivity) $\mu(X \cup Y) = \mu(X) + \mu(Y)$ if $X \cap Y = \emptyset$;
- (translation invariance) $\mu(X + \mathbf{v}) = \mu(X)$ for all $X \in \mathcal{P}$ and $\mathbf{v} \in \mathbb{R}^2$;
 - $\mu(Q) = 1$, where $Q = [0,1] \times [0,1]$ is the unit square.

The area function satisfies an extra condition:

• (monotonicity) $\mu(X) \leq \mu(Y)$ whenever $X \subset Y$.

Now for any bounded set $X \subset \mathbb{R}^2$ we let $\overline{\mu}(X) = \inf_{X \subset Y} \mu(Y)$ and $\underline{\mu}(X) = \sup_{Z \subset X} \mu(Z)$. Note that $\underline{\mu}(X) \leq \overline{\mu}(X)$. In the case of equality, the set X is called **Jordan measurable** and we let $\operatorname{area}(X) = \overline{\mu}(X)$.

Area, volume, and determinants

• 2×2 determinants and plane geometry

Let *P* be a parallelogram in the plane \mathbb{R}^2 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are represented by adjacent sides of *P*. Then $\operatorname{area}(P) = |\det A|$, where $A = (\mathbf{v}_1, \mathbf{v}_2)$, a matrix whose columns are \mathbf{v}_1 and \mathbf{v}_2 .

Consider a linear operator $L_A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L_A(\mathbf{v}) = A\mathbf{v}$ for any column vector \mathbf{v} . Then $\operatorname{area}(L_A(D)) = |\det A| \operatorname{area}(D)$ for any bounded domain D.

• 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^3 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ are represented by adjacent edges of Π . Then $\operatorname{volume}(\Pi) = |\det B|$, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, a matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

Similarly, volume $(L_B(D)) = |\det B|$ volume(D) for any bounded domain $D \subset \mathbb{R}^3$.

volume(Π) = |det B|, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Note that the parallelepiped Π is the image under L_B of a unit cube whose adjacent edges are $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

The triple $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the right-hand rule. We say that L_B preserves orientation if it preserves the hand rule for any basis. This is the case if and only if det B > 0.

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R = [a, b] \times [c, d] \subset \mathbb{R}^2$.

Definition. A **Riemann sum** of a function $f : R \to \mathbb{R}$ with respect to a partition $P = \{D_1, D_2, \dots, D_n\}$ of R generated by samples $t_j \in D_j$ is a sum

$$\mathcal{S}(f, P, t_j) = \sum_{j=1}^n f(t_j) \operatorname{area}(D_j).$$

The norm of the partition P is $||P|| = \max_{1 \le j \le n} \operatorname{diam}(D_j)$.

Definition. The Riemann sums $\mathcal{S}(f, P, t_j)$ converge to a limit I(f) as the norm $||P|| \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||P|| < \delta$ implies $|\mathcal{S}(f, P, t_j) - I(f)| < \varepsilon$ for any partition P and choice of samples t_j .

If this is the case, then the function f is called **integrable** on R and the limit I(f) is called the **integral** of f over R.

Double integral

Closed coordinate rectangle $R = [a, b] \times [c, d]$ = { $(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d$ }. Notation: $\iint_R f \, dA$ or $\iint_R f(x, y) \, dx \, dy$.

Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f : R \to \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R = [a, b] \times [c, d]$, then

$$\iint_R f \, dA = \int_a^b \left(\int_c^d f(x, y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) dy.$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on [a, b] and a function h is integrable on [c, d], then the function f(x, y) = g(x)h(y) is integrable on $R = [a, b] \times [c, d]$ and $\iint_R g(x)h(y) dx dy = \int_a^b g(x) dx \cdot \int_c^d h(y) dy.$

Integrals over general domains

Suppose $f : D \to \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^2$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R:

$$f^{\mathrm{ext}}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D, \\ 0 & \text{if } (x,y) \notin D. \end{cases}$$

Definition. $\iint_D f \, dA$ is defined to be $\iint_R f^{\text{ext}} \, dA$.

In particular, $\operatorname{area}(D) = \iint_D 1 \, dA$.