MATH 311
 Topics in Applied Mathematics I

Lecture 34:
Multiple integrals.
Line integrals.

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R=[a, b] \times[c, d] \subset \mathbb{R}^{2}$.
Definition. A Riemann sum of a function $f: R \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ of R generated by samples $t_{j} \in D_{j}$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right) \operatorname{area}\left(D_{j}\right)
$$

The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n} \operatorname{diam}\left(D_{j}\right)$.
Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on R and the limit $I(f)$ is called the integral of f over R.

Double integral

Closed coordinate rectangle $R=[a, b] \times[c, d]$
$=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, \quad c \leq y \leq d\right\}$.
Notation: $\iint_{R} f d A$ or $\iint_{R} f(x, y) d x d y$.
Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f: R \rightarrow \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y .
$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on $[a, b]$ and a function h is integrable on $[c, d]$, then the function $f(x, y)=g(x) h(y)$ is integrable on $R=[a, b] \times[c, d]$ and

$$
\iint_{R} g(x) h(y) d x d y=\int_{a}^{b} g(x) d x \cdot \int_{c}^{d} h(y) d y .
$$

Integrals over general domains

Suppose $f: D \rightarrow \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^{2}$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R :

$$
f^{\mathrm{ext}}(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \in D \\
0 & \text { if }(x, y) \notin D
\end{array}\right.
$$

Definition. $\iint_{D} f d A$ is defined to be $\iint_{R} f^{\mathrm{ext}} d A$.
In particular, $\operatorname{area}(D)=\iint_{D} 1 d A$.

Integration as a linear operation

Theorem 1 If functions f, g are integrable on a set $D \subset \mathbb{R}^{2}$, then the sum $f+g$ is also integrable on D and

$$
\iint_{D}(f+g) d A=\iint_{D} f d A+\iint_{D} g d A
$$

Theorem 2 If a function f is integrable on a set $D \subset \mathbb{R}^{2}$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on D and

$$
\iint_{D} \alpha f d A=\alpha \iint_{D} f d A
$$

More properties of integrals

Theorem 3 If functions f, g are integrable on a set $D \subset \mathbb{R}^{2}$, and $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$, then

$$
\iint_{D} f d A \leq \iint_{D} g d A
$$

Theorem 4 If a function f is integrable on sets $D_{1}, D_{2} \subset \mathbb{R}^{2}$, then it is integrable on their union $D_{1} \cup D_{2}$. Moreover, if the sets D_{1} and D_{2} are disjoint up to a set of zero area, then

$$
\iint_{D_{1} \cup D_{2}} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A .
$$

Change of variables in a double integral

Theorem Let $D \subset \mathbb{R}^{2}$ be a measurable domain and f be an integrable function on D. If
$\mathbf{T}=(u, v)$ is a smooth coordinate mapping such that \mathbf{T}^{-1} is defined on D, then

$$
\begin{aligned}
& \iint_{D} f(u, v) d u d v \\
& =\iint_{\mathbf{T}^{-1}(D)} f(u(x, y), v(x, y))\left|\operatorname{det} \frac{\partial(u, v)}{\partial(x, y)}\right| d x d y
\end{aligned}
$$

In particular, the integral in the right-hand side is well defined.

Problem Evaluate a double integral

$$
\iint_{D} f(x, y) d x d y
$$

over a disc D bounded by the circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2}$.
To evaluate the integral, we move the origin to (x_{0}, y_{0}) and then switch to polar coordinates (r, ϕ). That is, we use the substitution $(x, y)=T(r, \phi)=\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right)$.
Jacobian matrix: $J=\left(\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi}\end{array}\right)=\left(\begin{array}{cc}\cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi\end{array}\right)$.
Then $\operatorname{det} J=r \cos ^{2} \phi+r \sin ^{2} \phi=r$. Hence

$$
\begin{gathered}
\iint_{D} f(x, y) d x d y=\iint_{T^{-1}(D)} f\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right)|\operatorname{det} J| d r d \phi \\
=\int_{0}^{2 \pi} \int_{0}^{R} f\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right) r d r d \phi .
\end{gathered}
$$

Problem Evaluate a double integral

$$
\iint_{P} f(x, y) d x d y
$$

over a parallelogram P with vertices $(-1,-1),(1,0),(2,2)$, and $(0,1)$.

Adjacent edges of the parallelogram P are represented by vectors $\mathbf{v}_{1}=(1,0)-(-1,-1)=(2,1)$ and $\mathbf{v}_{2}=(0,1)-(-1,-1)=(1,2)$.
Consider a transformation L of the plane \mathbb{R}^{2} given by

$$
L\binom{u}{v}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{u}{v}+\binom{-1}{-1}=\binom{2 u+v-1}{u+2 v-1}
$$

(columns of the matrix are vectors \mathbf{v}_{1} and \mathbf{v}_{2}). By construction, L maps the unit square $[0,1] \times[0,1]$ onto the parallelogram P. The Jacobian matrix J of L is the same at any point: $J=\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

Changing coordinates in the integral from (x, y) to (u, v) so that

$$
(x, y)=L(u, v)=(2 u+v-1, u+2 v-1)
$$

we obtain
$\iint_{P} f(x, y) d x d y$

$$
\begin{aligned}
& =\iint_{L^{-1}(P)} f(2 u+v-1, u+2 v-1)|\operatorname{det} J| d u d v \\
& =3 \int_{0}^{1} \int_{0}^{1} f(2 u+v-1, u+2 v-1) d u d v
\end{aligned}
$$

Triple integral

To integrate in \mathbb{R}^{3}, volumes are used instead of areas in \mathbb{R}^{2}. Instead of coordinate rectangles, basic sets are coordinate boxes (or bricks) $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right] \subset \mathbb{R}^{3}$. Then we can define an integral of a function f over a measurable set $D \subset \mathbb{R}^{3}$.
Notation: $\iiint_{D} f d V$ or $\iiint_{D} f(x, y, z) d x d y d z$.
The properties of triple integrals are completely analogous to those of double integrals. In particular, Fubini's Theorem is formulated as follows.

Theorem If a function f is integrable on a brick $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right] \subset \mathbb{R}^{3}$, then

$$
\iiint_{B} f d V=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}}\left(\int_{a_{3}}^{b_{3}} f(x, y, z) d z\right) d y\right) d x
$$

Path

Definition. A path in \mathbb{R}^{n} is a continuous function $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$.
Paths provide parametrizations for curves.
Length of the path \mathbf{x} is defined as
$L=\sup _{P} \sum_{j=1}^{k}\left\|\mathbf{x}\left(t_{j}\right)-\mathbf{x}\left(t_{j-1}\right)\right\|$ over all partitions
$P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ of the interval $[a, b]$.
Theorem The length of a smooth path
$\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is $\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t$.
Arclength parameter: $s(t)=\int_{a}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$
\mathcal{S}\left(f, P, \tau_{j}\right)=\sum_{j=1}^{k} f\left(\mathbf{x}\left(\tau_{j}\right)\right)\left(s\left(t_{j}\right)-s\left(t_{j-1}\right)\right),
$$

where $P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ is a partition of $[a, b]$, $\tau_{j} \in\left[t_{j}, t_{j-1}\right]$ for $1 \leq j \leq k$, and s is the arclength parameter of the path \mathbf{x}.

Theorem Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and f be a function defined on the image of this path. Then

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

$d s$ is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t$.

Alternatively, the integral of \mathbf{F} over \mathbf{x} can be represented as the integral of a differential form

$$
\int_{\mathbf{x}} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

where $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ and $d x_{i}=x_{i}^{\prime}(t) d t$.

Applications of line integrals

- Mass of a wire

If f is the density on a wire C, then $\int_{C} f d s$ is the mass of C.

- Work of a force

If \mathbf{F} is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}$ is the work done by \mathbf{F} on a particle that moves along the path \mathbf{x}.

- Circulation of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$.

- Flux of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the flux of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$, where \mathbf{n} is the outward unit normal vector to C.

