MATH 311

- Topics in Applied Mathematics I
- - Lecture 34:
- Multiple integrals.

- Line integrals.

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R = [a, b] \times [c, d] \subset \mathbb{R}^2$.

Definition. A **Riemann sum** of a function $f: R \to \mathbb{R}$ with respect to a partition $P = \{D_1, D_2, \dots, D_n\}$ of R generated by samples $t_j \in D_j$ is a sum

$$S(f, P, t_j) = \sum_{j=1}^n f(t_j) \operatorname{area}(D_j).$$

The norm of the partition P is $||P|| = \max_{1 \le j \le n} \operatorname{diam}(D_j)$.

Definition. The Riemann sums $S(f, P, t_j)$ converge to a limit I(f) as the norm $||P|| \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||P|| < \delta$ implies $|S(f, P, t_j) - I(f)| < \varepsilon$ for any partition P and choice of samples t_j .

If this is the case, then the function f is called **integrable** on R and the limit I(f) is called the **integral** of f over R.

Double integral

Closed coordinate rectangle $R = [a, b] \times [c, d]$ = $\{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}.$

Notation:
$$\iint_R f \, dA$$
 or $\iint_R f(x, y) \, dx \, dy$.

Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f: R \to \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R = [a, b] \times [c, d]$, then

$$\iint_R f \, dA = \int_a^b \left(\int_c^d f(x,y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) dy.$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on [a, b] and a function h is integrable on [c, d], then the function f(x, y) = g(x)h(y) is integrable on $R = [a, b] \times [c, d]$ and $\iint_R g(x)h(y) dx dy = \int_a^b g(x) dx \cdot \int_a^d h(y) dy.$

Integrals over general domains

Suppose $f: D \to \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^2$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R:

$$f^{\mathrm{ext}}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D, \\ 0 & \text{if } (x,y) \notin D. \end{cases}$$

Definition.
$$\iint_{R} f \, dA$$
 is defined to be $\iint_{R} f^{\text{ext}} \, dA$.

In particular,
$$area(D) = \iint_D 1 dA$$
.

Integration as a linear operation

Theorem 1 If functions f, g are integrable on a set $D \subset \mathbb{R}^2$, then the sum f + g is also integrable on D and

$$\iint_D (f+g) dA = \iint_D f dA + \iint_D g dA.$$

Theorem 2 If a function f is integrable on a set $D \subset \mathbb{R}^2$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on D and

$$\iint_D \alpha f \, dA = \alpha \iint_D f \, dA.$$

More properties of integrals

Theorem 3 If functions f, g are integrable on a set $D \subset \mathbb{R}^2$, and $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$, then

$$\iint_{D} f \ dA \leq \iint_{D} g \ dA.$$

Theorem 4 If a function f is integrable on sets $D_1, D_2 \subset \mathbb{R}^2$, then it is integrable on their union $D_1 \cup D_2$. Moreover, if the sets D_1 and D_2 are disjoint up to a set of zero area, then

$$\iint_{D_1 \cup D_2} f \, dA = \iint_{D_1} f \, dA + \iint_{D_2} f \, dA.$$

Change of variables in a double integral

Theorem Let $D \subset \mathbb{R}^2$ be a measurable domain and f be an integrable function on D. If $\mathbf{T} = (u, v)$ is a smooth coordinate mapping such that \mathbf{T}^{-1} is defined on D, then

$$\iint_{D} f(u, v) du dv$$

$$= \iint_{\mathbf{T}^{-1}(D)} f(u(x, y), v(x, y)) \left| \det \frac{\partial(u, v)}{\partial(x, y)} \right| dx dy.$$

In particular, the integral in the right-hand side is well defined.

Problem Evaluate a double integral

$$\iint_{D} f(x, y) dx dy$$

over a disc D bounded by the circle $(x-x_0)^2+(y-y_0)^2=R^2$.

To evaluate the integral, we move the origin to (x_0, y_0) and then switch to polar coordinates (r, ϕ) . That is, we use the substitution $(x, y) = T(r, \phi) = (x_0 + r \cos \phi, y_0 + r \sin \phi)$.

Jacobian matrix:
$$J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{pmatrix}.$$

Then $\det J = r \cos^2 \phi + r \sin^2 \phi = r$. Hence

$$\iint_D f(x,y) dx dy = \iint_{T^{-1}(D)} f(x_0 + r\cos\phi, y_0 + r\sin\phi) |\det J| dr d\phi$$
$$= \int_0^{2\pi} \int_0^R f(x_0 + r\cos\phi, y_0 + r\sin\phi) r dr d\phi.$$

Problem Evaluate a double integral

$$\iint_{P} f(x,y) \, dx \, dy$$

over a parallelogram P with vertices (-1, -1), (1, 0), (2, 2), and (0, 1).

Adjacent edges of the parallelogram P are represented by vectors $\mathbf{v}_1=(1,0)-(-1,-1)=(2,1)$ and $\mathbf{v}_2=(0,1)-(-1,-1)=(1,2)$.

Consider a transformation L of the plane \mathbb{R}^2 given by

$$L\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2u + v - 1 \\ u + 2v - 1 \end{pmatrix}$$

(columns of the matrix are vectors \mathbf{v}_1 and \mathbf{v}_2). By construction, L maps the unit square $[0,1] \times [0,1]$ onto the parallelogram P. The Jacobian matrix J of L is the same at

any point:
$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

Changing coordinates in the integral from (x, y) to (u, v) so that

) so that
$$(x,y) = L(u,v) = (2u + v - 1, u + 2v - 1),$$

(x, y) = L(u, v) = (2u + v - 1, u + 2v - 1),we obtain

$$(x,y) = L(u,v) = (2u+v-1, u+2v-1),$$
we obtain
$$\iint_P f(x,y) dx dy$$

$$= \iint_P f(2u+v-1, u+2v-1) |\det J| du dx$$

 $= \iint_{I^{-1}(P)} f(2u+v-1, u+2v-1) |\det J| \, du \, dv$ $=3\int_{0}^{1}\int_{0}^{1}f(2u+v-1,\,u+2v-1)\,du\,dv.$

Triple integral

To integrate in \mathbb{R}^3 , volumes are used instead of areas in \mathbb{R}^2 . Instead of coordinate rectangles, basic sets are coordinate boxes (or bricks) $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$. Then we can define an integral of a function f over a measurable set $D \subset \mathbb{R}^3$.

Notation:
$$\iiint_D f \, dV \quad \text{or} \quad \iiint_D f(x, y, z) \, dx \, dy \, dz.$$

The properties of triple integrals are completely analogous to those of double integrals. In particular, Fubini's Theorem is formulated as follows.

Theorem If a function f is integrable on a brick $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$, then

$$\iiint_{B} f \ dV = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} f(x, y, z) \ dz \right) dy \right) dx.$$

Path

Definition. A **path** in \mathbb{R}^n is a continuous function $\mathbf{x}:[a,b]\to\mathbb{R}^n$.

Paths provide parametrizations for curves.

Length of the path \mathbf{x} is defined as $L = \sup_{P} \sum_{j=1}^{k} \|\mathbf{x}(t_j) - \mathbf{x}(t_{j-1})\|$ over all partitions $P = \{t_0, t_1, \dots, t_k\}$ of the interval [a, b].

Theorem The length of a smooth path

$$\mathbf{x}:[a,b]\to\mathbb{R}^n$$
 is $\int_a^b \|\mathbf{x}'(t)\| dt$.

Arclength parameter: $s(t) = \int_{0}^{t} \|\mathbf{x}'(\tau)\| d\tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x}:[a,b]\to\mathbb{R}^n$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$S(f, P, \tau_j) = \sum_{j=1}^k f(\mathbf{x}(\tau_j)) \left(s(t_j) - s(t_{j-1}) \right),$$

where $P = \{t_0, t_1, \dots, t_k\}$ is a partition of [a, b], $\tau_j \in [t_j, t_{j-1}]$ for $1 \le j \le k$, and s is the arclength parameter of the path \mathbf{x} .

Theorem Let $\mathbf{x}:[a,b]\to\mathbb{R}^n$ be a smooth path and f be a function defined on the image of this path. Then

$$\int_{\mathbf{x}} f \, ds = \int_{a}^{b} f(\mathbf{x}(t)) \| \mathbf{x}'(t) \| \, dt.$$

ds is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$.

Alternatively, the integral of **F** over **x** can be represented as the integral of a **differential form**

$$\int_{\mathbf{x}} F_1 dx_1 + F_2 dx_2 + \cdots + F_n dx_n,$$

where $\mathbf{F} = (F_1, F_2, \dots, F_n)$ and $dx_i = x_i'(t) dt$.

Applications of line integrals

Mass of a wire

If f is the density on a wire C, then $\int_C f \, ds$ is the mass of C.

• Work of a force

If **F** is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$ is the work done by **F** on a particle that moves along the path \mathbf{x} .

Circulation of fluid

If **F** is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve C is $\oint_C \mathbf{F} \cdot d\mathbf{s}$.

Flux of fluid

If **F** is the velocity field of a planar fluid, then the flux of the fluid across a closed curve C is $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$, where **n** is the outward unit normal vector to C.