MATH 311
 Topics in Applied Mathematics I

Lecture 36:
 Conservative vector fields. Area of a surface.

Conservative vector fields

Let R be an open region in \mathbb{R}^{n} such that any two points in R can be connected by a continuous path. Such regions are called (arcwise) connected.

Definition. A continuous vector field $\mathbf{F}: R \rightarrow \mathbb{R}^{n}$ is called conservative if $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$
for any two simple, piecewise smooth, oriented curves $C_{1}, C_{2} \subset R$ with the same initial and terminal points.
An equivalent condition is that $\oint_{C} \mathbf{F} \cdot d \mathbf{s}=0$ for any piecewise smooth closed curve $C \subset R$.

Conservative vector fields

Theorem The vector field \mathbf{F} is conservative if and only if it is a gradient field, that is, $\mathbf{F}=\nabla f$ for some function $f: R \rightarrow \mathbb{R}$. If this is the case, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=f(B)-f(A)
$$

for any piecewise smooth, oriented curve $C \subset R$ that connects the point A to the point B.

Remark. In the case \mathbf{F} is a force field, conservativity means that energy is conserved. Moreover, in this case the function f is the potential energy.

Test of conservativity

Theorem If a smooth field $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is conservative in a region $R \subset \mathbb{R}^{n}$, then the Jacobian matrix $\frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$ is symmetric everywhere in R, that is,

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}} \text { for } i \neq j
$$

Indeed, if the field \mathbf{F} is conservative, then $\mathbf{F}=\nabla f$ for some smooth function $f: R \rightarrow \mathbb{R}$. It follows that the Jacobian matrix of \mathbf{F} is the Hessian matrix of f, that is, the matrix of second-order partial derivatives: $\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$.

Remark. The converse of the theorem holds provided that the region R is simply-connected, which means that any closed path in R can be continuously shrunk within R to a point.

Finding scalar potential

Example. $\mathbf{F}(x, y)=\left(2 x y^{3}+3 y \cos 3 x, 3 x^{2} y^{2}+\sin 3 x\right)$.
The vector field \mathbf{F} is conservative if $\partial F_{1} / \partial y=\partial F_{2} / \partial x$.
$\frac{\partial F_{1}}{\partial y}=6 x y^{2}+3 \cos 3 x, \frac{\partial F_{2}}{\partial x}=6 x y^{2}+3 \cos 3 x$.
Thus $\mathbf{F}=\nabla f$ for some function f (scalar potential of \mathbf{F}), that is, $\frac{\partial f}{\partial x}=2 x y^{3}+3 y \cos 3 x, \quad \frac{\partial f}{\partial y}=3 x^{2} y^{2}+\sin 3 x$.
Integrating the second equality by y, we get
$f(x, y)=\int\left(3 x^{2} y^{2}+\sin 3 x\right) d y=x^{2} y^{3}+y \sin 3 x+g(x)$.
Substituting this into the first equality, we obtain that $2 x y^{3}+3 y \cos 3 x+g^{\prime}(x)=2 x y^{3}+3 y \cos 3 x$. Hence $g^{\prime}(x)=0$ so that $g(x)=c$, a constant. Then $f(x, y)=x^{2} y^{3}+y \sin 3 x+c$.

Surface

Suppose D_{1} and D_{2} are domains in \mathbb{R}^{3} and $\mathbf{T}: D_{1} \rightarrow D_{2}$ is an invertible map such that both \mathbf{T} and \mathbf{T}^{-1} are smooth. Then we say that \mathbf{T} defines curvilinear coordinates in D_{1}.

Definition. A nonempty set $S \subset \mathbb{R}^{3}$ is called a smooth surface if for every point $\mathbf{p} \in S$ there exist curvilinear coordinates $\mathbf{T}: D_{1} \rightarrow D_{2}$ in a neighborhood of \mathbf{p} such that $\mathbf{T}(\mathbf{p})=\mathbf{0}$ and either $\mathbf{T}\left(S \cap D_{1}\right)=\left\{(x, y, z) \in D_{2} \mid z=0\right\}$ or $\mathbf{T}\left(S \cap D_{1}\right)=\left\{(x, y, z) \in D_{2} \mid z=0, y \geq 0\right\}$. In the first case, \mathbf{p} is called an interior point of the surface S, in the second case, \mathbf{p} is called a boundary point of S.
The set of all boundary points of the surface S is called the boundary of S and denoted ∂S.
A smooth surface S is called complete if for any convergent sequence of points from S, the limit belongs to S as well. A complete surface with no boundary points is called closed.

Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^{2}$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is called a parametrized surface. The image $\mathbf{X}(D)$ is called the underlying surface.
The parametrized surface is smooth if \mathbf{X} is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ are linearly independent for all $\left(s_{0}, t_{0}\right) \in D$. If this is the case, then the plane in \mathbb{R}^{3} through the point $\mathbf{X}\left(s_{0}, t_{0}\right)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ is called the tangent plane to $\mathbf{X}(D)$ at $\mathbf{X}\left(s_{0}, t_{0}\right)$.

Example. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function and consider a level set $P=\{(x, y, z): f(x, y, z)=c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{X}\binom{s}{t}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)+\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)\binom{s}{t}
$$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A=\left(a_{i j}\right)$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π. The tangent plane at every point is Π itself.
For a measurable set $D \subset \mathbb{R}^{2}$, the image $\mathbf{X}(D)$ is measurable in the plane Π. Moreover, area $(\mathbf{X}(D))=\alpha$ area (D) for some fixed scalar α. To determine α, consider the unit square $Q=[0,1] \times[0,1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha=\operatorname{area}(\mathbf{X}(Q))=\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\|$.

Area of a surface

Let P be a smooth surface parametrized by $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$.
Then the area of P is

$$
\operatorname{area}(P)=\iint_{D}\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\| d s d t
$$

Suppose P is the graph of a smooth function $g: D \rightarrow \mathbb{R}$, i.e., P is given by $z=g(x, y)$. We have a natural parametrization $\mathbf{X}: D \rightarrow \mathbb{R}^{3}, \mathbf{X}(x, y)=(x, y, g(x, y))$. Then $\frac{\partial \mathbf{X}}{\partial x}=\left(1,0, g_{x}^{\prime}\right)$ and $\frac{\partial \mathbf{X}}{\partial y}=\left(0,1, g_{y}^{\prime}\right)$. Consequently,

$$
\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
1 & 0 & g_{x}^{\prime} \\
0 & 1 & g_{y}^{\prime}
\end{array}\right|=\left(-g_{x}^{\prime},-g_{y}^{\prime}, 1\right) .
$$

It follows that

$$
\operatorname{area}(P)=\iint_{D} \sqrt{1+\left|g_{x}^{\prime}\right|^{2}+\left|g_{y}^{\prime}\right|^{2}} d x d y
$$

