MATH 311

Topics in Applied Mathematics I

Lecture 40:
 Review for the final exam (continued).

Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Change of basis for a linear operator.
- Similarity of matrices.

Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1-5.6, 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Euclidean structure in \mathbb{R}^{n} (length, angle, dot product)
- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Topics for the final exam: Part IV

Vector analysis (L/C 8.1-8.4, 9.1-9.5, 10.1-10.3, 11.1-11.3)

- Gradient, divergence, and curl
- Fubini's Theorem
- Change of coordinates in a multiple integral
- Geometric meaning of the determinant
- Length of a curve
- Line integrals
- Green's Theorem
- Conservative vector fields
- Area of a surface
- Surface integrals
- Gauss' Theorem
- Stokes' Theorem

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.
(d) Find the matrix of the operator L^{2020} (L applied 2020 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
\begin{gathered}
L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right| \\
=\left|\begin{array}{cc}
0 & -4 / 5 \\
y & z
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
3 / 5 & -4 / 5 \\
x & z
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
3 / 5 & 0 \\
x & y
\end{array}\right| \mathbf{e}_{3} \\
=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3}=\left(\frac{4}{5} y,-\frac{4}{5} x-\frac{3}{5} z, \frac{3}{5} y\right) .
\end{gathered}
$$

In particular, $L\left(\mathbf{e}_{1}\right)=\left(0,-\frac{4}{5}, 0\right), \quad L\left(\mathbf{e}_{2}\right)=\left(\frac{4}{5}, 0, \frac{3}{5}\right)$, $L\left(\mathbf{e}_{3}\right)=\left(0,-\frac{3}{5}, 0\right)$.

Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator L is spanned by columns of the matrix B. It follows that Range (L) is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{gathered}
$$

Alternatively, the kernel of L is the set of vectors $\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix B :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator L^{2020} is B^{2020}.
Since the matrix B has eigenvalues $0, i$, and $-i$, it is diagonalizable in \mathbb{C}^{3}. Namely, $B=U D U^{-1}$, where U is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2020}=U D^{2020} U^{-1}$. We have that $D^{2020}=$ $=\operatorname{diag}\left(0, i^{2020},(-i)^{2020}\right)=\operatorname{diag}(0,1,1)=-D^{2}$. Hence

$$
B^{2020}=U\left(-D^{2}\right) U^{-1}=-B^{2}=\left(\begin{array}{ccc}
0.64 & 0 & 0.48 \\
0 & 1 & 0 \\
0.48 & 0 & 0.36
\end{array}\right)
$$

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $V \subset \mathbb{R}^{4}$ spanned by vectors $\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$, and $\mathbf{x}_{3}=(-3,7,1,3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V :

$$
\mathbf{p}=\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{v}_{3}, \mathbf{v}_{3}\right\rangle} \mathbf{v}_{3} .
$$

Then the distance from \mathbf{y} to V equals $\|\mathbf{y}-\mathbf{p}\|$.
Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Then the desired distance will be $\left\|\mathbf{v}_{4}\right\|$.
$\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$,
$\mathbf{x}_{3}=(-3,7,1,3), \mathbf{y}=(0,0,0,1)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=(1,-1,1,-1)$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,1,3,-1)-\frac{4}{4}(1,-1,1,-1)$
$=(0,2,2,0)$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{8}(0,2,2,0)$
$=(0,0,0,0)$.

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_{3} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. V is a plane, not a 3 -dimensional subspace. To fix things, it is enough to drop \mathbf{x}_{3}, i.e., we should orthogonalize vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}$.
$\tilde{\mathbf{v}}_{3}=\mathbf{y}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(0,0,0,1)-\frac{-1}{4}(1,-1,1,-1)-\frac{0}{8}(0,2,2,0)$
$=(1 / 4,-1 / 4,1 / 4,3 / 4)$.

$$
\left\|\tilde{\mathbf{v}}_{3}\right\|=\left|\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}\right)\right|=\frac{1}{4}|(1,-1,1,3)|=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2} .
$$

Problem. The base of a pyramid is a quadrilateral with vertices at points $(0,0,0),(-1,1,2),(1,1,0)$ and $(1,3,2)$. The apex is at the point $(1,0,3)$. Find the volume of the pyramid.

Let P denote the pyramid. Let $O=(0,0,0), A_{1}=(-1,1,2)$, $A_{2}=(1,1,0), A_{3}=(1,3,2)$ and $B=(1,0,3)$.
First we construct a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(1,0,0)=A_{1}, T(0,1,0)=A_{2}$ and $T(0,0,1)=B$.
This transformation is unique and given by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

The matrix is $M=\left(A_{1}, A_{2}, B\right)$.

$$
\operatorname{det} M=\left|\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 0 & 3
\end{array}\right|=\left|\begin{array}{rrr}
-2 & 0 & 1 \\
1 & 1 & 0 \\
2 & 0 & 3
\end{array}\right|=\left|\begin{array}{rr}
-2 & 1 \\
2 & 3
\end{array}\right|=-8 .
$$

By construction, $T^{-1}(P)$ is a pyramid with the apex at $(0,0,1)$ and three vertices of the base at $(0,0,0),(1,0,0)$ and $(0,1,0)$. It follows that the base of $T^{-1}(P)$ is contained in the $x y$-plane and that the edge $(0,0,0)-(0,0,1)$ is the altitude.
To find the remaining vertex $T^{-1}\left(A_{3}\right)$, we need to solve a system of linear equations:

$$
\left\{\begin{array} { l }
{ - x + y + z = 1 , } \\
{ x + y = 3 , } \\
{ 2 x + 3 z = 2 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=1, \\
y=2, \\
z=0 .
\end{array}\right.\right.
$$

Hence the base of the pyramid is a trapezoid with bases of length 1 and 2 , and height 1 . Its area equals $\frac{3}{2}$. Therefore the volume of the pyramid $T^{-1}(P)$ equals $\frac{1}{3} \cdot \frac{3}{2} \cdot 1=\frac{1}{2}$.
We have volume $(T(D))=|\operatorname{det} M| \operatorname{volume}(D)$ for any domain $D \subset \mathbb{R}^{3}$. In particular, volume $(P)=|-8| \cdot \frac{1}{2}=4$.

