Sample problems for Test 3

(to be worked out during the review)

Problem 1 Find curl(curl(**F**)), where $\mathbf{F}(x, y, z) = (x^2 + y^2)\mathbf{e}_1 + ze^{x+y}\mathbf{e}_2 + (x + \sin y)\mathbf{e}_3$.

Problem 2 Evaluate a double integral

$$\iint_P (2x + 3y - \cos(\pi x + 2\pi y)) \, dx \, dy$$

over a parallelogram P with vertices (-1, -1), (1, 0), (2, 2), and (0, 1).

Problem 3 Find the volume of a tetrahedron (i.e., triangular pyramid) with vertices at points (0, 2, 1), (1, 0, 0), (2, 1, 2), and (3, 1, 1).

Problem 4 Consider a vector field $\mathbf{F}(x, y, z) = (yz + 2\cos 2x, xz - e^z, xy - ye^z).$

- (i) Verify that the field **F** is conservative.
- (ii) Find a function f such that $\mathbf{F} = \nabla f$.

Problem 5 Let C be a solid cylinder bounded by planes z = 0, z = 2 and a cylindrical surface $x^2 + y^2 = 1$. Orient the boundary ∂C with outward normals and evaluate a surface integral

$$\iint_{\partial C} (x^2 \mathbf{e}_1 + y^2 \mathbf{e}_2 + z^2 \mathbf{e}_3) \cdot d\mathbf{S}.$$

Problem 6 Let D be a region in \mathbb{R}^3 bounded by a paraboloid $z = x^2 + y^2$ and a plane z = 9. Let S denote the part of the paraboloid that bounds D, oriented by outward normals. Evaluate a surface integral

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S},$$

where $\mathbf{F}(x, y, z) = (e^{x^2 + z^2}, xy + xz + yz, e^{xyz}).$