
MATH 311

Topics in Applied Mathematics I

Lecture 3:
Gauss-Jordan reduction (continued).

Applications of systems of linear equations.



Gaussian elimination

Solution of a system of linear equations splits into

two parts: (A) elimination and (B) back
substitution. Both parts can be done by applying
a finite number of elementary operations.

Elementary operations for systems of linear equations:

(1) to multiply an equation by a nonzero scalar;
(2) to add an equation multiplied by a scalar to

another equation;
(3) to interchange two equations.



System of linear equations:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm

Coefficient matrix and column vector of the
right-hand sides:










a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn





















b1
b2
...
bm













System of linear equations:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm

Augmented matrix:










a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

... . . . ...
...

am1 am2 . . . amn bm













Since the elementary operations preserve the standard form of
linear equations, we can trace the solution process by looking
on the augmented matrix.

Elementary operations for systems of linear

equations correspond to elementary row operations

for augmented matrices:

(1) to multiply a row by a nonzero scalar;

(2) to add the ith row multiplied by some r ∈ R to
the jth row;

(3) to interchange two rows.

Remark. Rows are added and multiplied by scalars
as vectors (namely, row vectors).



The goal of the Gauss-Jordan reduction is to
convert the augmented matrix into reduced row

echelon form:






























∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗
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• all entries below the staircase line are zero;
• each boxed entry is 1, the other entries in its column are
zero;
• each circle corresponds to a free variable.



How to solve a system of linear equations

• Order the variables.
• Write down the augmented matrix of the system.
• Convert the matrix to row echelon form.

• Check for consistency.
• Convert the matrix to reduced row echelon

form.
• Write down the system corresponding to the

reduced row echelon form.
• Determine leading and free variables.

• Rewrite the system so that the leading variables
are on the left while everything else is on the right.
• Assign parameters to the free variables and write

down the general solution in parametric form.



New example.

{

x2 + 2x3 + 3x4 = 6
x1 + 2x2 + 3x3 + 4x4 = 10

Variables: x1, x2, x3, x4.

Augmented matrix:

(

0 1 2 3 6
1 2 3 4 10

)

To get it into row echelon form, we exchange the two rows:
(

1 2 3 4 10
0 1 2 3 6

)

Consistency check is passed. To convert into reduced row
echelon form, add −2 times the 2nd row to the 1st row:
(

1 0 −1 −2 −2

0 1 2 3 6

)

The leading variables are x1 and x2; hence x3 and x4 are free
variables.



Back to the system:
{

x1 − x3 − 2x4 = −2
x2 + 2x3 + 3x4 = 6

⇐⇒

{

x1 = x3 + 2x4 − 2
x2 = −2x3 − 3x4 + 6

General solution:














x1 = t + 2s − 2
x2 = −2t − 3s + 6

x3 = t

x4 = s

(t, s ∈ R)

In vector form, (x1, x2, x3, x4) =
= (−2, 6, 0, 0) + t(1,−2, 1, 0) + s(2,−3, 0, 1).



Example with a parameter.






y + 3z = 0
x + y − 2z = 0

x + 2y + az = 0

(a ∈ R)

The system is homogeneous (all right-hand sides

are zeros). Therefore it is consistent
(x = y = z = 0 is a solution).

Augmented matrix:





0 1 3 0
1 1 −2 0
1 2 a 0





Since the 1st row cannot serve as a pivotal one, we

interchange it with the 2nd row:







0 1 3 0

1 1 −2 0
1 2 a 0



 →





1 1 −2 0

0 1 3 0
1 2 a 0





Now we can start the elimination.
First subtract the 1st row from the 3rd row:




1 1 −2 0

0 1 3 0
1 2 a 0



 →





1 1 −2 0

0 1 3 0
0 1 a + 2 0





The 2nd row is our new pivotal row.
Subtract the 2nd row from the 3rd row:




1 1 −2 0
0 1 3 0

0 1 a + 2 0



 →





1 1 −2 0
0 1 3 0

0 0 a − 1 0







At this point row reduction splits into two cases.

Case 1: a 6= 1. In this case, multiply the 3rd row

by (a− 1)−1:




1 1 −2 0
0 1 3 0

0 0 a − 1 0



 →





1 1 −2 0

0 1 3 0

0 0 1 0





The matrix is converted into row echelon form.

We proceed towards reduced row echelon form.

Subtract 3 times the 3rd row from the 2nd row:




1 1 −2 0

0 1 3 0
0 0 1 0



 →





1 1 −2 0

0 1 0 0
0 0 1 0







Add 2 times the 3rd row to the 1st row:




1 1 −2 0
0 1 0 0

0 0 1 0



 →





1 1 0 0
0 1 0 0

0 0 1 0





Finally, subtract the 2nd row from the 1st row:




1 1 0 0

0 1 0 0
0 0 1 0



 →





1 0 0 0

0 1 0 0

0 0 1 0





Thus x = y = z = 0 is the only solution.



Case 2: a = 1. In this case, the matrix is already

in row echelon form:




1 1 −2 0

0 1 3 0
0 0 0 0





To get reduced row echelon form, subtract the 2nd

row from the 1st row:




1 1 −2 0

0 1 3 0
0 0 0 0



 →





1 0 −5 0

0 1 3 0
0 0 0 0





z is a free variable.
{

x − 5z = 0
y + 3z = 0

⇐⇒

{

x = 5z
y = −3z



System of linear equations:






y + 3z = 0
x + y − 2z = 0

x + 2y + az = 0

Solution: If a 6= 1 then (x , y , z) = (0, 0, 0);

if a = 1 then (x , y , z) = (5t,−3t, t), t ∈ R.



Applications of systems of linear equations

Problem 1. Find the point of intersection of the
lines x − y = −2 and 2x + 3y = 6 in R

2.
{

x − y = −2

2x + 3y = 6

Problem 2. Find the point of intersection of the

planes x − y = 2, 2x − y − z = 3, and
x + y + z = 6 in R

3.






x − y = 2
2x − y − z = 3

x + y + z = 6



Method of undetermined coefficients often involves

solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x)
such that p(1) = 4, p(2) = 3, and p(3) = 4.

Suppose that p(x) = ax2 + bx + c . Then

p(1) = a + b + c , p(2) = 4a + 2b + c ,
p(3) = 9a + 3b + c .







a + b + c = 4

4a+ 2b + c = 3
9a+ 3b + c = 4



Method of undetermined coefficients often involves
solving systems of linear equations.

Problem 3. Find a quadratic polynomial p(x)

such that p(1) = 4, p(2) = 3, and p(3) = 4.

Alternative choice of coefficients: p(x) = ã + b̃x + c̃x2.
Then p(1) = ã + b̃ + c̃ , p(2) = ã + 2b̃ + 4c̃ ,

p(3) = ã + 3b̃ + 9c̃ .







ã + b̃ + c̃ = 4

ã + 2b̃ + 4c̃ = 3

ã + 3b̃ + 9c̃ = 4



Traffic flow

450 400

610 640

520 600

Problem. Determine the amount of traffic
between each of the four intersections.



x1

x2

x3

x4

450 400

610 640

520 600

x1 =?, x2 =?, x3 =?, x4 =?



A B

CD

x1

x2

x3

x4

450 400

610 640

520 600

At each intersection, the incoming traffic has to
match the outgoing traffic.



Intersection A: x4 + 610 = x1 + 450

Intersection B : x1 + 400 = x2 + 640
Intersection C : x2 + 600 = x3
Intersection D: x3 = x4 + 520














x4 + 610 = x1 + 450

x1 + 400 = x2 + 640
x2 + 600 = x3
x3 = x4 + 520

⇐⇒















−x1 + x4 = −160
x1 − x2 = 240

x2 − x3 = −600
x3 − x4 = 520



Electrical network

3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

Problem. Determine the amount of current in
each branch of the network.



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

i1 =?, i2 =?, i3 =?



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

Kirchhof’s law #1 (junction rule): at every

node the sum of the incoming currents equals the
sum of the outgoing currents.



3 ohms 2 ohms

4 ohms

1 ohm

9 volts

4 volts

i1

i2

i3

A B

Node A: i1 = i2 + i3
Node B : i2 + i3 = i1



Electrical network

Kirchhof’s law #2 (loop rule): around every

loop the algebraic sum of all voltages is zero.

Ohm’s law: for every resistor the voltage drop E ,
the current i , and the resistance R satisfy E = iR.

Top loop: 9− i2 − 4i1 = 0

Bottom loop: 4− 2i3 + i2 − 3i3 = 0
Big loop: 4− 2i3 − 4i1 + 9− 3i3 = 0

Remark. The 3rd equation is the sum of the first
two equations.









i1 = i2 + i3
9− i2 − 4i1 = 0
4− 2i3 + i2 − 3i3 = 0

⇐⇒







i1 − i2 − i3 = 0
4i1 + i2 = 9

−i2 + 5i3 = 4


